
CSCI 1120 (Low-Level Computing), Spring 2009

Homework 2

Assigned: February 16, 2009.

Due: February 23, 2009, at 5pm.

Credit: 20 points.

1 Reading

Be sure you have read, or at least skimmed, the readings for 2/16, linked from the “Lecture topics
and assignments” page1.

2 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 1120 homework 2”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Linux machines, so you should probably make sure they work in that environment before turning
them in.

1. (10 points) Write a C program to compute and print the first N Fibonacci numbers. (Recall
the definition of the Fibonacci numbers: f0 = 1, f1 = 1, and for n > 1, fn = fn−1 + fn−2.)
You can hardcode N , but choose a value that seems to you to be both interesting and sensible.
(It should be obvious what I mean by “sensible” if you try a large value of N .)

Sample output for N = 6 (which is sensible but not very interesting):

the 0-th Fibonacci number is 1

the 1-th Fibonacci number is 1

the 2-th Fibonacci number is 2

the 3-th Fibonacci number is 3

the 4-th Fibonacci number is 5

the 5-th Fibonacci number is 8

2. (10 points) Newton’s method for computing the the square root of a non-negative number
x starts with an initial guess r0 and then repeatedly refines it using the formula

rn = (rn−1 + (x/rn−1))/2;

Repetition continues until the absolute value of (rn)2 - x is less than some specified threshold
value. An easy if not necessarily optimal initial guess is just x.

1http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2009spring/HTML/schedule.html

1



CSCI 1120 Homework 2 Spring 2009

Write a C program that implements this algorithm and compares its results to those obtained
with the library function sqrt. Since we haven’t talked yet about how to read values from a
human user, hard-code inputs as we did for the program to compute the roots of a quadratic
equation, but show what happens for different values of x and different convergence thresholds.
You might also find it interesting to print the number of iterations.

Sample output (for quickly-chosen inputs — you may want different ones):

square root of 0:

with newton’s method (threshold 0.1): 0 (0 iterations)

using library function: 0

difference: 0

square root of -4:

unable to compute square root of negative number

square root of 4:

with newton’s method (threshold 0.1): 2.00061 (3 iterations)

using library function: 2

difference: 0.000609756

square root of 2:

with newton’s method (threshold 0.1): 1.41667 (2 iterations)

using library function: 1.41421

difference: 0.0024531

square root of 2:

with newton’s method (threshold 0.01): 1.41667 (2 iterations)

using library function: 1.41421

difference: 0.0024531

square root of 2:

with newton’s method (threshold 1e-06): 1.41421 (4 iterations)

using library function: 1.41421

difference: 1.59482e-12

You may find the library function fabs (which computes the absolute value of a double)
useful.

2


