Administrivia

- Homework 2 on Web, due next Monday.

Slide 1

Variables in C

- Simple variables (numbers, characters, etc.) are fairly similar to Java primitive variables. Key differences:
- Sizes of numeric types aren't as strictly defined - e.g., a Java int is exactly 32 bits, but a C int may be more. (Why? to allow

Slide 2 implementations to use whatever is most efficient.)

- No boolean in C89.
- char is an ASCII (not Unicode) character.
- Arrays syntactically similar to Java, but more primitive (more about them later).
- Pointers - later.

Expressions, Statements, and Control Structures

- Most syntax is similar to Java (which is no accident) - within each function, code is organized into statements, which may contain expressions.
- Control structures are mostly the same as in Java - if, while, do, switch, for, etc. C doesn't have the simpler/newer form of for (referred

Slide 3

 to as "foreach").- Key difference is the lack of classes (and supporting syntax), and addition of pointers (more later).

Functions

- Functions also are similar to those in Java, with a couple of key distinctions:
- They have to be declared (or defined) before being referenced.
- Pass-by-value semantics for parameters means you need pointers if you want to modify/return more than a single value.
Slide 4
- Library functions (e.g., printf) documented in man page. To use them, be sure to include the appropriate \#include.

Sidebar - Compiler Options

- Earlier I showed the simplest way to use gcc to compile a program. But there are many variations - options. Specify on the command line, ahead of name of input file.
- Some of the most useful:

Slide 5

- -Wall and -pedantic warn you about dangerous and non-standard things.
- - std=c99 allows you to use full C99.
- - o allows you to name the output file (default a . out).
(The right way to use all of these - makefiles, next time.)

Examples

- First let's write a program to calculate the roots of a quadratic equation, using the quadratic formula. (We'll hard-code input values for now - a discussion of getting input should wait until after we talk about pointers next time.)

Slide 6

