
CSCI 1120 February 23, 2009

Slide 1

Administrivia

• Homework 3 on Web, due next Monday.

Slide 2

Arrays in C, Briefly

• Syntax for creating arrays is somewhat different from Java’s — no explicit
new, but instead something like

int x[10];

to reserve space for 10 ints. In old-style C, sizes must be constants known
at compile time. In new-style C, “variable-length arrays” (VLAs) are permitted
as well.

• Syntax for array access is the same as Java, but there’s no length
variable, and no checks are made to ensure that the index is legit (between 0
and array size minus one). This can make for interesting bugs . . .

• Syntax for passing arrays as parameters to functions is somewhat like Java’s,
except brackets typically go after the parameter name, and and arrays and
pointers (more soon) can be used more or less interchangeably.

CSCI 1120 February 23, 2009

Slide 3

Arrays in C — Example

• Let’s write a sort program . . .

• (Where to get input? let’s just generate random values, using library function
rand().)

Slide 4

Strings in C

• Java has a String class with many useful features and methods. In C
that’s not possible . . .

• Instead, in C, strings are arrays of chars, with the convention that the actual
text of interest is followed by a null character (8-bit zero, represented in code
as ’\0’.

• You can operate on individual characters however you see fit; there are also
standard library functions for some common operations (e.g., strcmp to
compare two strings — similar to compareTo in Java).

• A significant source of potential trouble — most functions assume that strings
are properly terminated, and (worse) many have no safety check to make
sure you don’t overflow a destination array.

CSCI 1120 February 23, 2009

Slide 5

Pointers in C

• Pointers in C are similar to, but not identical to, references in Java — with the
key differences having to do with safety features and level of abstraction. (No
surprise!)

• In C, pointers are just memory addresses — but they are declared to point to
variables (or data) of a particular type. Example:

int * pointer to int;
double * pointer to double;

Slide 6

Pointers in C — Operators

• & gets the address of something in memory. So for example you could write

int x;
int * x ptr = &x;

• * “dereferences” a pointer. So for example you could change x above by
writing

*x ptr = 10;

• You can also perform arithmetic on pointers (e.g., ++x ptr) — something
not allowed in Java, and another example of the languages’ different design
goals.

CSCI 1120 February 23, 2009

Slide 7

Pointers Versus Arrays

• In C, pointers and arrays are in some sense(s) equivalent — not identical, but
in many contexts interchangeable.

• This is reflected in the man pages for many functions (e.g., printf). It also
means that when you pass an array to a function, what you’re actually
passing is a pointer — so the array is not copied.

Slide 8

Minute Essay

• None — sign in.

