
CSCI 1120 March 2, 2009

Slide 1

Administrivia

• Homework 4 on Web; due a week after spring break.

Slide 2

Review — Strings and Pointers

• Strings in C are null-terminated arrays of chars.

• Pointers are in some ways a less abstract and less safe version of Java
references. They’re also in some respects interchangeable with arrays.



CSCI 1120 March 2, 2009

Slide 3

Pass By Reference (Sort Of)

• A significant potential limitation on functions is that a function can only return
a single value. Pointers provide a way to get around this restriction: By
passing a pointer to something, rather than the thing itself, we can in effect
have a function return multiple things.

• To make this work, typically you declare the function’s parameters as pointers,
and pass addresses of variables rather than variables.

• The “sort of” of the title means that this isn’t true pass by reference, as it
exists in some other languages such as C++, but it can be used to more or
less get the same effect. Notice also that Java can’t do this, though again
there are mechanisms that can more or less get the same effect. (What?)

Slide 4

Arrays of Text Strings and Command-Line Arguments

• If you can have arrays of int and char and so forth — can you have arrays
of text strings? Sure! They look like two-dimensional arrays of char, or like
arrays of char *.

• Further, this is how C programs get input “from the command line” (e.g., when
you write gcc myprogram.c, gcc somehow gets myprogram.c,
right?):

main can also be defined as

int main(int argc, char * argv[]) { .... }
where argc is the number of arguments, plus one, and argv is an array of
strings containing the arguments. Example — let’s write a simple “echo”
program.



CSCI 1120 March 2, 2009

Slide 5

Sidebar: I/O in C — Some Very Basic Functions

• getchar gets one character and returns it as an int. The special value
EOF indicates end of input. (“End of input”? control-D from terminal, more in
next sidebar.)

• putchar writes out one character.

• Use this to write a very simple program that simply copies its input to its
output . . .

Slide 6

Sidebar: Input/Output Redirection in UNIX/Linux

• In programming classes I talk about “reading from standard input” rather than
“reading from the keyboard”, and “writing to standard output” (or “writing to
standard error”) rather than “writing to the screen”.

(In Java terms — System.in, System.out, and System.err. C
has similar concepts but calls them stdin, stdout, and stderr.)

• What’s the difference?



CSCI 1120 March 2, 2009

Slide 7

I/O Redirection, Continued

• stdin (standard input) can come from keyboard, file, or from another
program or shell script.

• stdout and stderr (standard output, error) can go to terminal or file
(overwrite or append), separately or together.

Slide 8

I/O Redirection, Continued

• For example — to redirect output of ls to ls.out, type

ls >ls.out

(Overwrites ls.out. To append, replace > with >>.)

To also redirect any error messages, append 2>&1.

• To redirect input, use <infile.



CSCI 1120 March 2, 2009

Slide 9

I/O in C — Basics

• We talked already about single-character I/O (getchar and putchar).

• You already know about a function to write output to “standard output”,
printf. Many options, allowing a lot of control over what’s printed.

• How about input? Counterpart of printf is scanf (skim man page).
Simple to use, though error detection is somewhat crude, and reading text
strings can be hazardous.

• One way to work with files is I/O redirection. Is there something more
general? Yes . . . (next time).

Slide 10

Minute Essay

• None — sign in.


