
CSCI 1120 April 6, 2009

Slide 1

Administrivia

• Homework 5 on Web; due next week.

Slide 2

Dynamic Memory and C

• With the C89 standard, you had to decide when you compiled the program
how big to make things, particularly arrays — a significant limitation.

• Variable-length arrays in C99 standard help with that, but don’t solve all
related problems:

In most implementations, space is obtained for them on “the stack”, an area of
memory that’s limited in size.

You can return a pointer from a function, but not to one of the function’s local
variables (because these local variables cease to exist when you return from
the function).



CSCI 1120 April 6, 2009

Slide 3

Dynamic Memory and C, Continued

• “Dynamic allocation” of memory gets around these limitations — allows us to
request memory of whatever size we want (well, up to limitations on total
memory the program can use) and have it stick around until we give it back to
the system.

(The trick here is that most implementations differentiate between two areas
of memory, a “stack” used for local variables, and a “heap” used for dynamic
memory allocation. Usually the former is more limited in size.)

• To request memory, use malloc. To return it to the system, use free.
(For short simple programs you can not bother with free, but for longer and
more complicated programs, you should clean up when you can, or eventually
you may run out of memory.)

• Compare/contrast with Java — allocate space for objects with new, no
explicit deallocation, garbage collection.

Slide 4

Dynamic Memory and C, Continued

• Examples:

int * nums = malloc(sizeof(int) * 100);
char * some text = malloc(sizeof(char) *
20);
free(nums);

• Book recommends “casting” value returned by malloc. Other references
recommend the opposite! But you should check the value — if NULL, system
was not able to get that much memory.



CSCI 1120 April 6, 2009

Slide 5

Function Pointers

• You know from Java that there are situations in which it’s useful to have
method parameters that are essentially code (e.g., GUI listener methods,
compareTo method for sorting, run method for threads).

• In Java, you often do this by way of a class whose main or only purpose is to
hold the needed code.

• In C, however, you can explicitly pass a pointer to the function.

Slide 6

Function Pointers in C

• The type of a function pointer includes information about the number and
types of parameters, plus the return type.

• Example — last parameter to library function qsort (in its man page). Call
this by providing, in your code, a function with declaration

int my compare(const char *, const char *);

and using my compare as the last parameter to qsort.

(See sort-improved.c on sample programs page.)

• (Other example use in C In A Nutshell.)



CSCI 1120 April 6, 2009

Slide 7

Example — Revised Sort Program

• Change the program to allow specifying at runtime that N inputs are to be
generated.

• Notice also use of library function qsort.

Slide 8

Minute Essay

• None — sign in.


