
CSCI 1120 September 12, 2012

Slide 1

Administrivia

• Homework 1 on the Web. Due next week. Meant to be fairly easy starter

problems; you can (and probably should) do them using only what we’ve

talked about up through today’s lecture.

Turn in by e-mail. Please mention course name/number and assignment in

subject line.

• I say in the syllabus that I try to respond promptly to e-mail. Exceptions are

minute essays and homeworks, which I don’t always look at right away. If you

need a quick reply, make that apparent on the subject line please!

Slide 2

C Basics — Quick Overview

• Unlike Python and Scala scripts (but like Java programs), C programs include

some standard boilerplate (#include for library functions, explicit main).

• Variables must be explicitly declared (including type).

• Expressions similar to those in Python/Scala/Java but with a few differences.

• Statements are also similar, but assignments are considered to be

expressions too, with a value. Allows chaining, e.g.,

a = b = 10;

• A caveat: The C standard does not spell out everything (e.g., size of int

type) so experimental results are not necessarily conclusive (might be specific

to a particular compiler/system).

CSCI 1120 September 12, 2012

Slide 3

A Few Words About Syntax

• Python programmers should note that in C, unlike in Python, indentation is not

generally syntactically significant. (But adopting a consistent style makes your

code more readable to humans.)

• Scala programmers should note that in C, unlike in Scala, the compiler will not

add semicolons to the ends of statements or guess about types.

Slide 4

Variables in C

• To do anything interesting in a program, we need some place to store input

and intermediate values — “variables”.

• In C, variables must be declared, with a name and a type. (Contrast with

Python, Scala.) In C89, all declarations must come before any code.

• Variable names follow rules for identifiers — letters, numbers, and

underscores only, must start with letter or underscore, preferably letter.

Case-sensitive.

CSCI 1120 September 12, 2012

Slide 5

Types in C

• Integer types include int, short, long. (All can be declared

unsigned too.) Unlike in some language (such as Java and Scala), sizes

not strictly defined — e.g., a Java int is exactly 32 bits, but a C int may be

more. (Why? to allow implementations to use whatever is most efficient.)

• Floating-point types include float, double. Binary equivalent of

scientific notation (with exponent and mantissa). Minimum size for double

is larger than for float so allows more significant figures, larger range.

• More about other types later.

Slide 6

Expressions in C

• C (like many other programming languages) has a notion of an expression.

Simple examples (assuming we’ve declared variables x and y):

– 5

– x

– y + 5

– (x + y) / 2

• Every expression has a value, and computing this value is called evaluating

the expression. Evaluate the above expressions, assuming x has value 10

and y has value 20 . . .

CSCI 1120 September 12, 2012

Slide 7

Expressions in C, Continued

• Sometimes evaluating an expression also produces changes to variables in

the expression or other variables; these are called side effects. Examples:

– x = 10

– printf("hello, world\n)
(Yes, really! Usually we don’t care about much about the values of these

expressions, just their side effects.)

• Many, many operators of different kinds. For now we’ll look only at the ones

for arithmetic.

Slide 8

Arithmetic Expressions — Operators

• Usual arithmetic operators +, -, * (multiplication), / (division). (+ and - can

be unary too.)

Notice that division, applied to integers, discards any remainder. This is so

the result will be an integer too, and can even be useful. What if you want a

fraction? Later.

• Also % operator for getting remainder; e.g., x % 2 is 0 if x is even, 1 if it’s

odd.

• Other useful arithmetic operators include pre/post increment/decrement, bit

shifts.

• Expressions can be quite complex. How they’re evaluated depends on rules

of precedence and associativity. My advice — when in doubt, use

parentheses! Example: (x + y) / 2 versus x + y / 2.

CSCI 1120 September 12, 2012

Slide 9

Expressions — “Caveat Programmer”

• C standard is somewhat imprecise about details of expression evaluation —

e.g., in evaluating

f() + g()

two functions could be called in either order. (Why? To allow greater flexibility

for implementers, possible allow for more-efficient programs.)

• C syntax allows programmers to write statements/expressions in which a

variable’s value is changed more than once, e.g.,

i = (i++) + (i--);

Syntactically legal, but standard says that such expressions invoke “undefined

behavior”. Best to avoid that!

Slide 10

Statements in C

• C programs are made up of statements (usually collected inside functions).

• Statements come in several types:

– Null (;).

– Expression (expression ;).

– Return (return expression ;).

– Compound (more later).

CSCI 1120 September 12, 2012

Slide 11

Simple Output

• Simple/typical way to produce output (to “standard output” — terminal for

now) is with library function printf.

• Parameters are “format string”, which may include “conversion specifications”,

followed by zero or more expressions, one for each conversion specification.

E.g., to print value of int variable x:

printf("the value of x is %d\n", x);

Full details in man page for printf. (Find with man 3 printf.)

Slide 12

Preprocessor Directives — A Bit More

• Examples so far have started with #include directive to tell compiler

where to find information about I/O library functions. (Roughly — “include”,

i.e., copy, information from header file-or-equivalent.) This is input to the

“preprocessor”.

• Another useful directive is #define, to give meaningful names to

constants, e.g.,

#define IMPRECISE_PI 3.14159

CSCI 1120 September 12, 2012

Slide 13

Simple Input

• Simple way to get integer/float input (from “standard input”) is with library

function scanf. Parameters are “format string” (similar to the one for

printf) and list of pointers (more later) to variables, e.g.:

scanf("%d %d", &var1, &var2);

Behaves somewhat like library functions for reading from standard input in

other languages, except that it skips whitespace (including newlines) and

stops when it encounters something other than what it needs (e.g.,

non-numeric characters when number is wanted).

• Considered as an expression, call to scanf has a value, namely the number

of variables successfully read. C-idiomatic way to check for success is

if (scanf("%d %d"&var1, &var2) == 2)

Slide 14

Conditional Execution

• Also as in other procedural languages, C has syntax for saying that some

code should be executed only if some condition holds.

• Syntax is

if (boolean-expression)

statement1

else

statement2

where statement1 and statement2 can be single statements or blocks

enclosed in curly braces (and should probably be indented, for the

convenience of human readers).

• You can build up chains of conditions by making the statement after else

another if, and you can omit the else and following statement. (The ideas

here should be very familiar; only the syntax should be new.)

CSCI 1120 September 12, 2012

Slide 15

Conditional Expressions

• Scala and Python both provide a way to include if/else idea within an

expression.

• C does too, but it’s not as obvious — “ternary operator”, e.g.,

int sign = (x >= 0) ? 1 : -1

Slide 16

Example — Finding Roots of a Quadratic Equation

• As an example of all of this, let’s write a program that finds and prints the

root(s) of a quadratic equation of the form

ax
2 + bx + c = 0

using the familiar(?) formula

x =
−b ±

√
b2 − 4ac

2a

• (We’ll also include in this program an example of getting input from standard

input.)

CSCI 1120 September 12, 2012

Slide 17

Sidebar — Man Pages, Revisited

• As mentioned earlier, most commands — and many library functions — have

“man pages” (short for “manual”). These are meant as online references

rather than tutorials, so not always easy reading, but usually very complete.

• man program shows its output to you using a program intended for paging

through text. On our systems, default is less. Keystroke commands include

space to go forward, b to go back, q to quit. h for help — or, of course, you

could read all about it (how?).

• Sometimes there are multiple commands/functions with the same name.

printf is one. man printf tells you about the (command-line)

command, not the C library function. To get all possibilities, man -a

printf. To get the one for the library function, man 3 printf.

Slide 18

Minute Essay

• None — sign in.

