Administrivia

- Homework 4 on the Web; due next week.
- Grades for Homework 1 sent by e-mail last week. More coming soon, I hope.
- If you're concerned about your grade: If you've turned in all the homeworks, more or less on time and more or less working as best you can tell, you're probably in good shape. I did a quick check of the first three assignments and sent mail to people who hadn't turned them in.

Minute Essay From Last Lecture

- (See previous "answer" slide.) Key points - which many people mentioned - are that redirection is useful when you're working with a lot of data and/or you want to save data for repeated use.

A Very Little About "Random" Numbers

- Homework 3 asked you to work with the library functions srand () and rand () . Belatedly, a few words about what they do ...
- First, what we mean by "random" is (l think!) an interesting question with no obvious answer. What's often wanted is something that can't be predicted, and it's not clear we can get that with a system that's deterministic. Further, even if we could, we might not want that, since we often want to be able to repeat a test.
- So, often what we really want is a "pseudo-random number generator" something that generates a sequence of numbers that looks random but are repeatable given some reproducible starting point.
- Early researchers apparently thought more-complex algorithms would give better results, but - not necessarily. Very simple algorithms can give quite good results.

A Very Little About "Random" Numbers, Continued

- Lots of uses for "random" sequences (e.g., so-called "Monte Carlo" methods for simulating things), so many libraries include function(s) to produce them.
- Typical library provides some way to set the starting point (the "seed") and then a function that when called repeatedly produces the sequence srand () and rand () in standard C. Mostly these produce a large range of possible values. (Why is this good?)
- Some libraries also provide functions to map the full range to a smaller one (e.g., to simulate rolling a die). C doesn't, but there are some semi-obvious approaches. The problem on Homework 3 asks you to do a simple comparison of two of them.

"It's All Ones and Zeros"

- At the hardware level, all data is represented in binary form - ones and zeros. (Why? hardware for that is simpler to build.)
- How then do we represent various kinds of data? First a short review of binary numbers ...

Slide 5

Binary Numbers

- Humans usually use the decimal (base 10) number system, but other (positive integer) bases work too. (Well, maybe not base 1.)
- In base 10, there are ten possible digits, with values 0 through 9.

In base 2, there are 2 possible digits (bits), with values 0 and 1 .
Slide 6

- In base 10, 1010 means what? What about in base 2?

Converting Between Bases

- Converting from another base to base 10 is easy if tedious (just use definition).
- Converting from base 10 to another base? Two algorithms for that ...

Slide 7

Decimal to Binary, Take 1

- One way is to first find the highest power of 2 smaller than or equal to the number, write that down, subtract it from the number, and continue.
- In somewhat sloppy pseudocode (letting n be the number we want to convert):

Slide 8
while $(n>0)$
find largest p such that $2^{p} \leq n$
write a 1 in the p-th output position
subtract 2^{p} from n
end while

Decimal to Binary, Take 2

- Another way produces the answer from right to left rather than left to right, repeatedly dividing by 2 (again n will be the number we want to convert): while $(n>0)$
divide n by 2 , giving quotient q and remainder r

Slide 9

write down r set n equal to q
end while
(Again, this is a bit sloppy.)

Octal and Hexadecimal Numbers

- Binary numbers are convenient for computer hardware, but cumbersome for humans to write. Octal (base 8) and hexadecimal (base 16) are more compact, and conversions between these bases and binary are straightforward.

Slide 10

- To convert binary to octal, group bits in groups of three (right to left), and convert each group to one octal digit using the same rules as for converting to decimal (base 10).
- Converting binary to hexadecimal is similar, but with groups of four bits. What to do with values greater than 9 ? represent using letters A through F (upper or lower case).

Computer Representation of Integers

- So now you can probably guess how non-negative integers can be represented using ones and zeros - number in binary. Fixed size (so we can only represent a limited range).
- How about negative numbers, though? No way to directly represent
plus/minus. Various schemes are possible. The one most used now is two's complement: Motivated by the idea that it would be nice if the way we add numbers doesn't depend on their sign. So first let's talk about addition ...

Machine Arithmetic - Integer Addition and Negative Numbers

- Adding binary numbers works just like adding base-10 numbers - work from right to left, carry as needed. (Example.)
- Two's complement representation of negative numbers is chosen so that we

Slide $12 \quad$ easily get 0 when we add $-n$ and n.
Computing $-n$ is easy with a simple trick: If m is the number of bits we're using, addition is in effect modulo 2^{m}. So $-n$ is equivalent to $2^{m}-n$, which we can compute as $\left.\left(\left(2^{m}-1\right)-n\right)+1\right)$.

- So now we can easily (?) do subtraction too - to compute $a-b$, compute $-b$ and add.

Binary Fractions

- We talked about integer binary numbers. How would we represent fractions?
- With base-10 numbers, the digits after the decimal point represent negative powers of 10 . Same idea works in binary.

Slide 13

Computer Representation of Real Numbers

- How are non-integer numbers represented? usually as floating point.
- Idea is similar to scientific notation - represent number as a binary fraction multiplied by a power of 2 :

$$
x=(-1)^{s i g n} \times(1+f r a c) \times 2^{\text {bias }+e x p}
$$

and then store sign frac, and exp. Sign is one bit; number of bits for the other two fields varies - e.g., for usual single-precision, 8 bits for exponent and 23 for fraction. Bias is chosen to allow roughly equal numbers of positive and negative exponents.

- Current most common format - "IEEE 754".

Numbers in Math Versus Numbers in Programming

- The integers and real numbers of the idealized world of math have some properties not completely shared by their computer representations.
- Math integers can be any size; computer integers can't.
- Math real numbers can be any size and precision; floating-point numbers can't. Also, some quantities that can be represented easily in decimal can't be represented in binary.
- Math operations on integers and reals have properties such as associativity that don't necessarily hold for the computer representations. (Yes, really!)

Computer Representation of Text

- We talked already about how "text strings" are, in C, arrays of "characters". How are characters represented? Various encodings possible.
- One common one is ASCII - strictly speaking, 7 bits, so fits nicely in smallest addressable unit of storage on most current systems (8-bit byte).

Slide 16

- Another one is Unicode - originally 16 bits (Java's char type), now somewhat more complicated.
- Either encoding can be considered as "small integers".
- C's char type often ASCII but doesn't have to be. (Older systems use(d) EBCDIC, an encoding rooted in punched cards.) C also has wchar_t, which could be Unicode.

Minute Essay

- The IEEE 754 standard lays out one way to represent floating-point numbers, but other ways are possible and have been used. In particular, one could vary how many bits are used for the exponent and how many for the mantissa. How might it be useful to use more bits for the exponent and fewer for the mantissa? What about the other way around?
Slide 17

Minute Essay Answer

- Using more bits for the exponent means you can represent a larger range of magnitudes, but with less precision. Using fewer bits for the exponent means a smaller range of magnitudes but more precision.

