
CSCI 1312 September 24, 2018

Slide 1

Administrivia

• Homework 4 deadline extended to Friday.

Slide 2

Programming Tip

• If you’re testing multiple conditions, only one of which is meant to be true,

probably best to do so with a chain of

if else if else if else

rather than a lot of ifs.

• In such a chain, notice what you already know when you get to an else. For

example, I say there’s something redundant in the following code:

if (a < b) { }

else if (a >= b) { }

(Spot it?)

CSCI 1312 September 24, 2018

Slide 3

Recursive Functions — One More Example

• First an example I’ve used as a minute essay question in past years:

• Here is a C function that does — something.

int foobar(int a, int b) {

if (b == 0) {

return a;

}

else {

return 1 + foobar(a, b-1);

}

}

What does foobar(5, 2) return?

• Can you say what this function seems designed to accomplish?

Slide 4

Recursive Functions — One More Example, Continued

• foobar(5, 2) returns 7. Why . . .

foobar(5, 2) = 1 + foobar(5, 1)

= 1 + 1 + foobar(5, 0)

= 1 + 1 + 5

= 7

• It’s a roundabout way of doing addition!

• A cultural(?) note: The name of the mystery function (foobar) is one used

often in CS when one needs a more or less meaningless name for something,

along with variants foo, bar, and so forth. Apparently based on WWII-era

acronym FUBAR.

CSCI 1312 September 24, 2018

Slide 5

Sidebar: Tracing Code

• A valuable skill to have is working through what the computer will do when it

executes your program — “tracing code”. Also known as “desk checking”,

from the days before desktop computers, or “playing computer”.

• Idea is to write down names of variables, their values; when one changes,

cross out old value and put in new one.

• (Short examples?)

• Also can be useful to enlist the computer’s help with this, via “debug print”

statements. Just remember to remove them (or at least comment them out)

when you get things working!

Slide 6

Sidebar: gcc Options

• I mentioned already the value of compiling with -Wall. There are many

other options that I think are useful:

• -pedantic warn you about non-standard usage.

• -std=c99 allows you to use features new with C99.

• -O optimizes, and also seems to find some problems not found without it.

• -o allows you to name the output file (default a.out).

• You aren’t going to type all of those . . .

CSCI 1312 September 24, 2018

Slide 7

A Very Little About make

• make is a old-style UNIX tool for building programs. I’ll talk more about it

later, but for now it will be useful for always compiling with particular options:

• If you have, in the directory where you compile, a file Makefile similar to

the one on the “sample programs” page, and you have a file hello.c,

typing

make hello

will compile with the options I think are useful and put the result in hello.

Execute with ./hello.

Slide 8

Sidebar: “Undefined Behavior” in C

• You may have noticed that if you try to input a really large value with scanf

you don’t get either the right value or any kind of error.

• You might also notice that strange things happen when you try to compute a

fairly large number using an int. (This is easy to do with our factorial

program.)

• Both examples of what C calls “undefined behavior”. Means that the language

doesn’t say what’s supposed to happen. Might be different depending on

compiler and options!

• A really careful programmer checks to make sure this can’t happen. (Revise

factorial program.)

CSCI 1312 September 24, 2018

Slide 9

Minute Essay

• None — quiz.

