
CSCI 1321 April 7, 2011

Slide 1

Administrivia

• Reminder: Homework 5 code due today. Homework 6 design due next

Tuesday.

Slide 2

Java GUI Libraries — Recap

• Many, many classes for GUI components — pre-defined components (e.g.,

JButton), containers (e.g., JPanel).

(Can also define your own “custom components”. More about them shortly.)

• How things are arranged on screen is controlled by “layout manager”. Can

nest containers, giving them different layout managers.

• How things work depends on “event listener” methods. Good place to use

anonymous inner classes.



CSCI 1321 April 7, 2011

Slide 3

Java GUI Libraries — Design Tips

• Probably better not to mix AWT and Swing unless necessary (e.g., unless

you’re doing an AWT-only program, prefer JFrame to Frame).

• To find out how to use components — skim online API, Oracle/Sun tutorials

(follow links from API), look for examples similar to what you want to do.

• For small programs, okay to put GUI and underlying data all in one class. For

larger programs, consider separating them — “Model/View/Controller” design

pattern.

• GUI components that must be accessed by more than one method — e.g., by

listener methods — should be instance variables. Other components can

often be declared locally in constructor.

• (Examples as time permits.)

Slide 4

Sidebar: Concurrency Basics

• Textbooks on operating systems talk about “processes” — “threads of control”

executing “concurrently”, i.e., at the same time (in fact or in effect).

Each is a sequence of steps, like the (sequential) programs you’ve written.

• How does it work? Conceptually, all processes not waiting for something

(such as I/O) run at the same time. Operating system basically simulates one

CPU per thread, with real CPU(s) switching back and forth among them.

• This turns out to be a good mental model for managing applications, and

activities of the O/S itself. It also means you could get better performance

with more than one CPU/core — can potentially have more than one thing

actually running at the same time.

• But there are some potential pitfalls, involving interaction among

processes/threads.



CSCI 1321 April 7, 2011

Slide 5

Sidebar Continued

• Two basic models — one in which the concurrently-executing things don’t

share (much) memory and one in which they do. Sharing memory has

benefits but also some serious potential pitfalls (“race conditions”).

• Java provides some support for both models, but at this point its support for

the shared-memory model is more relevant, because . . . (to be continued).

Slide 6

Java GUI Classes and Multithreading

• Currently Java GUI classes are implemented in terms of an “event dispatch

thread” (EDT) — something that listens (to some part of the operating

system/environment?) for “events” (from keyboard or mouse, e.g.) and

“dispatches” them by calling appropriate methods associated with GUI

components. There could be other threads active at the same time.

• Not all of what’s under the hood is “thread-safe” (okay to call from multiple

concurrently-executing things), so Oracle/Sun recommends that all changes

to GUI components be done in the EDT. This happens automatically with

listener methods. Accesses from the “main” thread and from other threads

should use SwingUtilities.invokeLater.



CSCI 1321 April 7, 2011

Slide 7

Multithreading and the Game Framework

• Listener methods run in the EDT. Other methods run in a different thread.

• Problem? Maybe. Concurrent access to simple primitive types (boolean,

int) is pretty safe — the worst that’s likely to happen is that changes made

by one thread aren’t immediately visible to others. (Probably any variables

that are used both in listener methods and by the rest of the game should be

declared volatile to help with this.) But anything involving more

complicated data structures is probably a bad idea without explicit

synchronization (to be discussed soon).

Slide 8

Graphics in Java — Custom Components

• Predefined components (JButton, etc.) do a lot, but what if you want

something that’s not provided? in particular, you want to control the image

yourself?

• Make a custom component — define a subclass of a component that provides

some of the needed functionality, and override the method that defines what’s

displayed.

E.g., subclass JPanel and override paintComponent, to include your

code to “paint” the panel.

• Call repaint when ready to redisplay.



CSCI 1321 April 7, 2011

Slide 9

Custom Painting

• Method to override is

public void paintComponent(Graphics g).

g is a “graphics context” that you can draw on. (Actually it’s a

Graphics2D.) Tutorial recommends calling

super.paintComponent(g) before doing anything else.

• Can get dimensions of panel with getSize, getHeight, getWidth,

getInsets.

Slide 10

Custom Painting, Continued

• Can set colors, draw shapes, lines, text, etc., etc. — see Graphics and

Graphics2D classes. Coordinate system is similar to what you’re using in

your game. See code in BasicBlock for simple example.

• General advice — look over the methods of Graphics and

Graphics2D; if confused, follow links to tutorial(s) and look for a suitable

example to adapt.



CSCI 1321 April 7, 2011

Slide 11

Drawing and Filling Shapes

• “Draw” means draw outline only; “fill” to draw and fill.

• Graphics provides methods for doing simple shapes. Graphics2D

provides more general methods. (Look at some shapes in

java.awt.geom.)

• You already know (from your game) about simple ways to control color of

what’s painted. The Graphics2D class provides a lot more options (next

slide).

Slide 12

Drawing and Filling Shapes, Continued

• Graphics2D provides, among other things:

– setPaint to fill shapes with simple color, gradient fill, etc.

– setStroke to draw outlines with different widths, etc.

– setFont to draw text in different fonts. (This works for text components

such as JLabel too.)

• And there’s more — “clipping”, affine transformations (e.g., rotation —

transformations in which parallel lines stay parallel), etc., etc.

• (Examples as time permits.)



CSCI 1321 April 7, 2011

Slide 13

Minute Essay

• Homework 6 will ask you to add something to your game — probably a panel

or panels along the edges of the playing field, or an addition to the menu bar

— that makes use of the Java GUI libraries. How do you think this might be

useful for your game?


