CSCI 1323

Slide 1

Slide 2

February 23, 2004

Administrivia

e Reminder: Quiz 3 Wednesday.

e Homework 4 on Web. Due next Monday.

Recursion and Recursive Definitions

e |dea of recursion closely related to idea of induction — “build on previous
smaller cases”.

e First look at recursive definitions. To define something recursively:

— Define one or more “base cases”.

— Define remaining cases in terms of other (“smaller”) cases.




CSCI 1323 February 23, 2004

4 )

Recursive Definitions — Sequences

o Asilly example:

S(1) = 1
S(n) = Snh-1)x10, forn>1
Slide 3 Try writing down some terms.

e Another example:

S(1) =1
S@2) = 1
S(n) = Sn—2)+Sn-1), forn>2

Try writing down some terms. Anyone recognize this one?

Recursive Definitions — Sets

e Example — could define the set of “integer arithmetic expressions” like this:
— Integers are expressions.
- If E and F are integer arithmetic expressions, so are (F + F),
(E-F),(ExF),and (E/F).
Slide 4 Examples?
Notice that this allows us to generate only “sensible” expressions. Notice also

that it’s a bit more restrictive than we might like.

o We could write similar definitions for the wffs of propositional and predicate

logic.




CSCI 1323 February 23, 2004

Recursive Definitions — Operations

o Example — factorial.

e Example — multiplication of non-negative integers, defined in terms of
addition.

e Example — (integer) division of a non-negative integer by a positive integer,

Slide 5 defined in terms of subtraction.

Recursive Algorithms

e Recursive definitions of sequences or operations often can be turned into

recursive algorithms with little effort.

e Examples — function to compute n-th Fibonacci number, function to do
division by repeated subtraction.

Slide 6 e Efficiency considerations:

— In terms of computer time/memory usage, recursion is almost always
worse than iteration — but not always, and sometimes not much worse.

— In terms of human effort to get program running correctly, recursion may

be much better.




CSCI 1323 February 23, 2004

Reasoning About Recursive Algorithms

e A recursive algorithm “works” if:
— It works for the base case(s).
— For other cases, it works assuming the recursive calls work.
— The recursion eventually stops — recursive calls are always “smaller”, and

Slide 7 eventually reduce to base cases.

o We could formalize this as a proof by induction.

Recursive Algorithms, More Examples

e Two good examples in text — selection sort and binary search.

e Another example — “quicksort”.

// pre: i, j are valid indices for L
// post: L(i) through L(j) are "sorted"
gsort (list L, index i, index j)
if (i >= j)
return

Slide 8 clse

elem pivot = L(i)
// rearrange L(i+1) through L(Jj) s.t.:
// L(i) .. L(m-1) <= pivot
/7 L(m) = pivot
7/ L(m+l) .. L(j) >= pivot
index m = split(pivot, L, i, j)
gsort (L, i, m-1)
gsort (L, m+l, J)

end gsort

(Why does this work?)




CSCI 1323

February 23, 2004

Slide 9

e Consider the following recursive definition of a sequence:

S(1) = 1
10S(n—1)+1, forn>1

What are S(1),5(2),...5(5)?




