
CSCI 2321 February 13, 2004

Slide 1

Administrivia

• None really.

• Quiz 2 scores — high was 10 (5 of them), low was 4.5 (3 of them). Very

strange distribution!

Slide 2

Addition/Subtraction and Overflow

• If adding two n-bit numbers, result can be too big to fit in n bits — “overflow”.

• For unsigned numbers, how could we tell this had happened?

• How about for signed numbers?

CSCI 2321 February 13, 2004

Slide 3

Addition/Subtraction and Overflow, Continued

• Recall that we can’t get overflow unless input operands have the same sign.

• If we add two positive numbers and get overflow, how can we tell this has

happened? Does this always work?

• If we add two negative numbers and get overflow, how can we tell this has

happened? Does this always work?

Slide 4

Addition/Subtraction and Overflow, Continued

• When we detect overflow, what do we do about it?

• From a HLL standpoint, we could ignore it, crash the program, set a flag, etc.

• To support various HLL choices, MIPS architecture includes two kinds of

addition instructions:

– Unsigned addition just ignores overflow.

– Signed addition detects overflow and “generates an exception” (interrupt)

— hardware branches to a fixed address (“exception handler”), usually

containing operating system code to take appropriate action.

This is why, if you look at MIPS assembler for C programs, the arithmetic is

unsigned — C ignores overflow, so why bother to look for it.

CSCI 2321 February 13, 2004

Slide 5

Logical Operations

• Sometimes useful to be able to work with individual bits — e.g., to implement

a compact array of boolean values.

• Thus, MIPS instruction set provides “logical operations”. Hard to say whether

these exist to support C bit-manipulation operations, or C bit-manipulation

operations exist because most ISAs provide such instructions!

Slide 6

“Shift” Instructions

• C << and >> (on unsigned numbers) are translated into sll (“shift left

logical”) and srl (“shift right logical”).

• sll and srl do what the names imply — bits “fall off’ one side, and we add

zeros at the other side. These are R-format instructions, and they use that

“shift amount” field.

• When shifting left, filling with zeros makes sense. But when shifting right, we

might want to extend the sign bit instead. sra (“shift right arithmetic”) does

that.

• Examples?

CSCI 2321 February 13, 2004

Slide 7

Bitwise And and Or

• C & is translated into and or andi. C | is translated into or or ori.

Format/operands are analogous to add and addi.

(Notice/recall that C has two sets of and/or operators — logical and bitwise.

These are the bitwise ones.)

• We could use these to test/set particular bits. Examples? Could we use them

to, e.g., compute remainder when dividing by power of 2?

Slide 8

Minute Essay

• Suppose $t0 contains 0xffffffff and $t1 contains 0x000000ff.

What is in $t2, $t3, $t4 after the following instructions are executed?

Answers in either binary or hexadecimal are fine.

sll $t2, $t0, 4

and $t3, $t0, $t1

or $t4, $t0, $t1

• Reminder: Homework 3 due by 5pm.

