
CSCI 2321 March 30, 2020

Slide 1

Administrivia

• I do send a lot of e-mail-to-all. Consider setting up a TMail filter so it’s easier

to keep track of? Filter on subject containing “csci 2321” or “csci 1120 / 2321”.

• I still intend to share with each of you a “grade summary” similar to what I did

at early-alert-grades time. More by e-mail soon?

• I had thought I’d make more-extensive use of TLearn but probably will not.

Instead I’m aiming to have information accessible from my home page and/or

the course Web site.

Slide 2

Administrivia

• Virtual office hours via Zoom. Hours on my home page

(www.cs.trinity.edu/˜bmassing) plus link to Trinity-users-only

document with links etc.

• Several updates to course Web site, under “Useful links”:

– Information about class meetings and recordings, via links to

Trinity-users-only documents.

– What the University is saying to students about remote learning. Section

on “ABCs of remote learning” worth a look, especially “Set boundaries”.

• Schedule page updated with next two weeks’ topics and readings. Sorry

about the delay — I forgot!

• Next quiz a week from today (tentative).

1

CSCI 2321 March 30, 2020

Slide 3

Exam 1 Follow-Up

• I thought trying to reproduce the conditions of an in-class exam remotely

would work and be the best option for the result I wanted. I didn’t want to just

make the exam take-home because I wanted the “timed” aspect.

• This seems to have worked okay for many students, aside from some

difficulties figuring out how to “mark up” PDF.

• For others, not so much. Not all of you apparently have access to a quiet work

environment. That that didn’t occur to me — I really apologize.

• My impression is that everyone made a real effort to make it work.

Appreciated!

• More in minute essay.

Slide 4

Numbers and Arithmetic — Overview

• Most current architectures represent integers as fixed-length two’s

complement binary quantities.

(But note there are/were architectures that support variable-length “packed

decimal”, with each byte storing representations of two base-10 digits.)

• Most current architectures these days represent real numbers using one or

more of the formats laid out by IEEE 754 standard. Based on a base-2

version of scientific notation, plus special values for zero, plus/minus “infinity”,

and “not a number” (NaN).

(But historically there have been architectures that could represent fractional

quantities using base-10 “fixed-point” notation, and this may be coming back.)

2

CSCI 2321 March 30, 2020

Slide 5

Numbers and Arithmetic — Overview, Continued

• Arithmetic can (in principle anyway) be done using same techniques taught to

grade-school children.

(Well, I hope still taught? Fans of classic science fiction may know Asimov

short story “The Feeling of Power” (1958?), which posits a world in which no

humans can do simple arithmetic without a computer. But he didn’t predict

how pervasive and affordable computers would become!)

Slide 6

Binary Versus Decimal (Review)

• In decimal (base 10) notation, each digit is multiplied by a power of 10. Same

idea for binary (base 2), but using powers of 2.

• So, converting from binary to decimal is easy (if tedious), working from

definition.

Brief example:

10112=(8+2+1)10=1110

3

CSCI 2321 March 30, 2020

Slide 7

Binary Versus Decimal (Review), Continued

• Converting from decimal to binary? Repeatedly divide by 2 and record

remainders . . .

• Why does this work? Could describe this as a recursive algorithm for

computing bits(n):

– Base case is n<2; trivial.

– For recursive step, divide n by 2 to get quotient q and remainder r. Then

n=2q+r, and:

Last bit of bits(n) should be r.

Remaining bits are bits(q), left-shifted by 1.

Slide 8

Other Number Bases (Review)

• Binary useful for showing real internal state but not very compact. Decimal

compact but not so easy to convert to/from binary.

• Easy to convert binary to/from power-of-2 base. Hence use of “octal” (base 8)

and “hexadecimal” (base 16). For base 16, need more than 10 “digits” to

make idea of positional notation work (tangent — very powerful idea!

compare to Roman numerals), use letters A etc. (uppercase or lowercase).

Conversion is based on some simple if tedious algebra: Group bits, right to

left, in groups of 3 (for octal) or 4 (for hexadecimal), and factor out a power of

8 or 16 from each group.

• Note — can also convert directly to/from decimal, much as for binary.

4

CSCI 2321 March 30, 2020

Slide 9

Binary Versus Decimal (Review?), Continued

• Terminology: “Least significant” and “most significant” bits.

• Seems like there would be one obvious way to store the multiple bytes of one

of these in memory, but no: “big endian” versus “little endian” (names from

Gulliver’s Travels).

Slide 10

Representing Integers (Review)

• Representing non-negative integers straightforward: Convert to binary and

pad on the left with zeros.

• What about negative integers?

• Could try using one bit for sign, but then you have +0 and -0, and there are

other complications.

• Or . . . consider analogy of a car odometer: Representable numbers form a

circle, and adding 1 to largest number yields 0.

5

CSCI 2321 March 30, 2020

Slide 11

Representing Integers (Review), Continued

• Could implement the car-odometer idea in binary, and then choose where to

“cut the circle” (between smallest and largest):

– Between 0 and all ones — unsigned integers.

– Between largest number with 0 as the MSB and smallest number with 1 as

MSB — “two’s complement” signed integers.

• Note: With this scheme +1/-1 moves “around the circle” — nothing special

needed for negative numbers.

Slide 12

Representing Integers (Review), Continued

• Note: If we have n bits, adding 2n to x gives us x again. Leads to an easy

way to compute −x: Compute 2n−x, and note that

2n−x = (2n−1)−x+1

which is very easy to compute . . .

• (This is the familiar(?) method of “flipping the bits” and adding 1. Not magic!)

6

CSCI 2321 March 30, 2020

Slide 13

Signed Versus Unsigned

• If we have n bits, can use them to represent signed values. (What range?)

Or can use them to represent non-negative values only (“unsigned values”).

(What range?)

• Many MIPS instructions have “unsigned” counterparts — addu, addiu,

sltu, etc.

• Example: Suppose we have

0x00000000 in $t0

0xfffffff2 in $t1

What happens if we execute slt $t2, $t0, $t1?

What happens if we execute sltu $t2, $t0, $t1?

(Same bits, different interpretations!)

Slide 14

Sign Extension (Review?)

• If we have a number in 16-bit two’s complement notation (e.g., the constant in

an I-format instruction), do we know how to “extend” it into a 32-bit number?

For non-negative numbers, easy.

For negative numbers, also not too hard — consider taking absolute value,

extending it, then taking negative again.

• In effect — “extend” by duplicating sign bit.

• (Note that not all instructions that include a 16-bit constant do this.)

7

CSCI 2321 March 30, 2020

Slide 15

Two’s Complement and Addition/Subtraction (Review)

• Addition in binary works much like addition in decimal (taking into account the

different bases). Note what happens if one number is negative.

• Subtraction could also be done the way we do in decimal. But could also

compute a−b as a+(−b), which makes for simpler hardware (more about this

soon).

Slide 16

Integer Addition/Subtraction and Overflow

• If adding two n-bit numbers, result can be too big to fit in n bits — “overflow”.

• For unsigned numbers, how could we tell this had happened?

• How about for signed numbers?

8

CSCI 2321 March 30, 2020

Slide 17

Addition/Subtraction and Overflow, Continued

• Note that we can’t get overflow unless input operands have the same sign.

• If we add two positive numbers and get overflow, how can we tell this has

happened?

• If we add two negative numbers and get overflow, how can we tell this has

happened?

• (Figure 3.2 in textbook summarizes.)

Slide 18

Addition/Subtraction and Overflow, Continued

• When we detect overflow, what do we do about it?

• From a HLL standpoint: ignore it, crash the program, set a flag, etc.

• To support various HLL choices, MIPS architecture includes two kinds of

addition instructions:

– Unsigned addition just ignores overflow.

– Signed addition detects overflow and “generates an exception” (interrupt):

Hardware branches to fixed address (“exception handler”), usually

containing operating-system code to take appropriate action.

9

CSCI 2321 March 30, 2020

Slide 19

Addition/Subtraction and Overflow, Continued

• C can ignore overflow (may depend on implementation — “undefined

behavior”?). So a real C compiler for MIPS might use unsigned arithmetic.

• Examples in the textbook don’t do this, perhaps to keep things simpler. SPIM

also apparently ignores overflow.

Slide 20

Implementing Arithmetic — Preview

• In next chapter, start talking about hardware design (though still at a

somewhat abstract level).

• For now, may be useful to know that the low-level building blocks are entities

that can evaluate Boolean expressions(!).

• So for example, can implement addition by first making a “one-bit adder” that

maps three inputs (two operands and carry-in) to two outputs (result and

carry-out), and then chaining together 32 of them. (Figures B.5.2, B.5.7.)

• Multiplication and division, however, may need to be more complex, involving

multiple steps and control-flow logic.

10

CSCI 2321 March 30, 2020

Slide 21

Multiplication

• (First discuss simple “humans can understand this” / proof of concept

approach.)

• As with addition, first think through how we do this “by hand” in base 10.

(Example, briefly.)

• Can do the same thing in base 2, but it’s simpler, no? computing the partial

results is easier. (More next time.)

Slide 22

Multiplication, Continued

• In MIPS architecture, 64-bit product / work area kept in two special-purpose

registers (lo and hi). Two instructions needed to do a multiplication and get

the result:

mult rs1, rs2

mflo rdest

Assembler provides a “pseudoinstruction”:

mul rdest, rs1, rs2

• Note, however, that a “smart” compiler might turn some multiplications into

shifts. (Which ones?)

11

CSCI 2321 March 30, 2020

Slide 23

Division

• (Again, first discuss simple “humans can understand this” / proof of concept

approach.)

• As with other arithmetic, first think through how we do this “by hand” in

base 10. (Example, briefly.)

• Can do the same thing in base 2. More next time.

Slide 24

Division, Continued

• In MIPS architecture, 64-bit work area for quotient and remainder kept in

same two special-purpose registers used for multiplication (lo and hi).

After division, quotient in lo and remainder in hi. Two (or more) instructions

needed to do a division and get result:

div rs1, rs2

mflo rq

mfhi rr

Assembler provides a “pseudoinstruction”:

div rdest, rs1, rs2

• Note, however, that a “smart” compiler might turn some divisions into shifts.

(Which ones?)

12

CSCI 2321 March 30, 2020

Slide 25

Minute Essay

• As noted, I had what I thought were reasonable reasons for asking you to do

the exam in real time at a fixed time. How did that work for you? Were you

able to actually focus on the exam during one of those two times?

• If you turned in a PDF, how did you produce it? exam on paper and then scan,

edit PDF in place (with what tool?), . . . ?

• Any comments right now about content? I’ll probably ask again when I return

them (probably by putting something in your “graded work” folders).

13

