
CSCI 3194 October 8, 2014

Slide 1

Administrivia

• Reminder: Homework 1 due today (preferably 5pm, hardcopy). (Or should we

extend the deadline — Friday or next week?)

Slide 2

Minute Essay From Last Lecture

• See slides for one answer. Various ways to improve so it doesn’t include lines

that don’t match “alias” as a whole word. A perhaps-better solution is to use

the alias built-in to generate the list!

• Can use -c option rather than piping to wc.

CSCI 3194 October 8, 2014

Slide 3

The Big Picture, Again

• Material in this course can come across as a bunch of parlor tricks — fun in

their way, but “so what?”

• The “big picture” view — introduce you to a range of tools that can help you

“work smart, not hard”. (“Laziness in programmers is a virtue”?)

The idea — if it’s tedious and repetitive and can be done by the computer

rather than by the human, make the computer do it! even if that requires the

human to think a bit more.

Once you start thinking along these lines, you may work differently with other

tools too (using keyboard shortcuts rather than menus, cutting and pasting

rather than retyping, etc.).

Slide 4

Review/Recap

• “UNIX philosophy” emphasizes small programs operating on text and ways to

connect them.

• As part of that — I/O redirection, pipes, “filter” programs.

CSCI 3194 October 8, 2014

Slide 5

More Useful Commands

• find. Very powerful/flexible, though if you don’t use it often you probably will

have to read the man page to remember syntax.

• Simple examples:

– Find all files in the current directory modified in the last week.

find . -mtime -7

– Find all files in your home directory whose name contains hello.

find $HOME -name "*hello*"

– Find all files in the current directory and subdirectories that end in .bak

and remove them.

find . -name "*.bak" -exec rm {} \;

(The -i flag doesn’t work in this context, but if you want to be prompted,

replace -exec with -ok.)

Slide 6

More Useful Commands, Continued

• diff — compare files or directories. (A good use — “regression testing” of

programs.)

• pushd, popd (actually shell built-ins) — manipulate shell’s stack of

directories.

• cat (concatenate — one or more inputs to output). Sometimes used when it

doesn’t need to be, as a substitute for redirecting input (“Useless Use Of Cat

(UUOC)”).

CSCI 3194 October 8, 2014

Slide 7

More Useful Commands, Continued

• xargs — “build and execute command lines from standard input”.

– Find all processes for program java and kill them:

ps aux | grep java | awk ’{print $2}’ | xargs kill

Slide 8

Command Substitution

• Can “inline” output of one command as parameters of another using

backquotes. Example:

vim ‘find . -name "*.c"‘

or use newer bash syntax

vim $(find . -name "*.c")

• The “inlined” command can even be a pipeline. Example:

ls -ld ‘echo $PATH | sed ’s/:/ /g’‘

• (Notice that these are backquotes, not single quotes!)

CSCI 3194 October 8, 2014

Slide 9

Shell Input as a Programming Language — the Good

• What bash understands is in a sense a programming language, with the

shell as its interpreter:

– Variables (usually untyped).

– Expressions (arithmetic and logical).

– Conditionals (if/then/else) and loops.

– Functions.

• Can be used interactively, or collected into “scripts”.

• I will talk about bash, but most shells provide similar functionality, just

sometimes with different syntax.

Slide 10

Shell Input as a Programming Language — the Bad

• Writing portable scripts is tough. Sticking to the sh subset of bash helps, as

does avoiding GNU-only commands and extensions, but how to do that . . .

• Dealing with spaces (in filenames, e.g.) is a huge pain. Rules for quoting are

tricky, and sometimes it seems the only way to get it right is to just try things

until something works. (Yuck!)

• Advice: For long and complex scripts, a scripting language such as Perl or

Python may be a better choice than a shell script.

CSCI 3194 October 8, 2014

Slide 11

Shell Scripts

• A “shell script” is just a sequence of things you could type at the shell prompt,

collected in a (text) file.

• Normally, first line of script is #! followed by path for shell (/bin/bash,

e.g.), and the file is marked “executable” (with chmod). But you can also

execute commands in file anyfile via bash anyfile.

• With the exception of the first line, lines starting with # are comments.

Slide 12

Shell Variables

• Define/assign variables with, e.g., myvar="hello". (Notice absence of

spaces.)

• Reference with, e.g., $myvar.

• What’s the difference between these and “environment variables” already

mentioned? Shell variables are local to the shell, not passed on to child

processes. Distinction is somewhat blurred in Bourne shells. Convention is

that environment variable names are all caps.

CSCI 3194 October 8, 2014

Slide 13

Shell Functions and Parameters

• Define functions as described previously — function followed by name,

parentheses, then function definition in curly brackets. Separate/end

commands with ; or newlines.

• Parameters for functions and shell scripts are positional — $0 for function

name, then $1, etc. $* is a list of all parameters; $# is the count of

parameters, not including $0.

• Call functions or shell scripts by giving name and then parameters, separated

by whitespace. (If a parameter should include whitespace, use quoting or

escape characters.)

Slide 14

Conditionals and Loops

• Basic syntax for if/then/else:

if command

then list-of-commands

else list-of-commands

fi

Which branch is taken depends on return code from command after if — 0

considered “true”, other values “false”.

• Basic syntax for while loops:

while command

do list-of-commands

done

Continues until return code from command after while is non-zero.

CSCI 3194 October 8, 2014

Slide 15

Conditionals and Loops, Continued

• Basic syntax for for loops:

for var in list-of-values

do list-of-commands

done

• Other constructs include case (like C switch), until.

Slide 16

Useful Commands for Conditions, Loops, Etc.

• Probably the most common for conditions is test (commonly abbreviated

as square brackets). Many options. Example:

if [-z "$1"]

then echo Usage: ‘basename $0‘ someparameter; exit

fi

• For lists/loops, seq, wildcards, and command substitution are good.

Examples:

for n in ‘seq -w 0 21‘

do echo Xena$n

done

for f in ‘ls -A $HOME‘

do du -sh $HOME/$f

done

CSCI 3194 October 8, 2014

Slide 17

Other Features

• Evaluating (numeric) expressions — next time.

• Reading from standard input — next time.

Slide 18

Minute Essay

• What has been interesting, difficult, or otherwise noteworthy about the

homework?

