
CSCI 3323 September 19, 2011

Slide 1

Administrivia

• (Quiz 1 solution in hardcopy.)

Slide 2

Interprocess Communication

• Processes almost always need to interact with other processes:

– “Ordering constraints” – e.g., process B uses as input some data produced

by process A.

– Use of shared resources — files, shared memory locations, etc.

• Use of shared resources can lead to “race conditions” — output depends on

details of interleaving.

• Processes must communicate to avoid race conditions and otherwise

synchronize.

• “Classical IPC problems” — simplified versions of things you often want to do.



CSCI 3323 September 19, 2011

Slide 3

Mutual Exclusion Problem

• In many situations, we want only one process at a time to have access to

some shared resource.

• Generic/abstract version — multiple processes, each with a “critical region”

(“critical section”):

while (true) {

do_cr(); // must be "finite"

do_non_cr(); // need not be "finite"

}

• Goal is to add something to this code such that:

1. No more than one process at a time can be “in its critical region”.

2. No process not in its critical region can block another process.

3. No process waits forever to enter its critical region.

4. No assumptions are made about how many CPUs, their speeds.

Slide 4

Mutual Exclusion Problem, Continued

• We’ll look at various solutions (some correct, some not):

– Using only hardware features always present (some notion of shared

variable).

– Using optional hardware features.

– Using “synchronization primitives” (abstractions that help solve this and

other problems).

• Recall that a correct solution

– Must work for more than one CPU.

– Must work even in the face of unpredictable context switches — whatever

we’re doing, another process can pull the rug out from under us between

“atomic operations” (machine instructions).



CSCI 3323 September 19, 2011

Slide 5

Sidebar: Atomic Operations

• “Atomic” operation — indivisible, executes without interference from other

processes.

• Which of the following are atomic?

– x = 1;

– x = x + 1;

– ++x;

– if (x == 0) x = 1;

(Or does it depend? On what?)

Slide 6

Proposed Solution — Disable Interrupts

• Pseudocode for each process:

while (true) {

disable_interrupts();

do_cr();

enable_interrupts();

do_non_cr();

}

• Does it work? reviewing the criteria . . .



CSCI 3323 September 19, 2011

Slide 7

Disable Interrupts, Continued

• (1) okay – context switches take place only in response to interrupts, so yes if

one CPU.

• (4) not okay — fails if more than one CPU (unless there is a way to disable

interrupts on all CPUs).

• Also, user-level programs shouldn’t be able to do this (though might be okay

for o/s).

Slide 8

Proposed Solution — Simple Lock Variable

• Shared variables:

int lock = 0;

Pseudocode for each process:

while (true) {

while (lock != 0);

lock = 1;

do_cr();

lock = 0;

do_non_cr();

}

• Does it work? reviewing the criteria . . .



CSCI 3323 September 19, 2011

Slide 9

Simple Lock Variable, Continued

• Can easily fail (1).

Slide 10

Proposed Solution — Strict Alternation

• Shared variables:

int turn = 0;

Pseudocode for process p0:

while (true) {

while (turn != 0);

do_cr();

turn = 1;

do_non_cr();

}

Pseudocode for process p1:

while (true) {

while (turn != 1);

do_cr();

turn = 0;

do_non_cr();

}

• Does it work? reviewing the criteria . . .



CSCI 3323 September 19, 2011

Slide 11

Strict Alternation, Continued

• (Yes, we’re simplifying to only two processes.)

• (1) okay.

• (2) / (3) not okay, since non-critical region need not be finite.

Slide 12

Sidebar: Reasoning about Concurrent Algorithms

• For concurrent algorithms (such as various solutions proposed for mutual

exclusion problem), testing is less helpful than for sequential algorithms.

(Why?)

• May be helpful, then, to try to think through whether they work. How? Idea of

“invariant” may be useful:

– Loosely speaking — “something about the program that’s always true”. (If

this reminds you of “loop invariants” in CSCI 1323 — good.)

– Goal is to come up with an invariant that’s easy to verify by looking at the

code and implies the property you want (here, “no more than one process

in its critical region at a time”).

– We will do this quite informally, but it can be done much more formally —

mathematical “proof of correctness” of the algorithm.



CSCI 3323 September 19, 2011

Slide 13

Strict Alternation, Revisited

• Shared variables:
int turn = 0;

Pseudocode for process p0:
while (true) {

while (turn != 0);

do_cr();

turn = 1;

do_non_cr();

}

Pseudocode for process p1:
while (true) {

while (turn != 1);

do_cr();

turn = 0;

do_non_cr();

}

• Invariant: “If pn is in its critical region, turn has value n.” (Might need to

expand definition of “in its critical region” a bit.)

Slide 14

Strict Alternation, Continued

• Invariant again: “If pn is in its critical region, turn has value n.” (Might need

to expand definition of “in its critical region” a bit.)

• How does this help? means that if p0 and p1 are both in their critical regions,

turn has two different values — impossible. So the first requirement is met.

Still have to think about the other three.



CSCI 3323 September 19, 2011

Slide 15

Sidebar of Sidebar: Reasoning About Loops

• (I probably won’t have time to through these slides in much detail in class but

will leave them here for anyone interested.)

• Usually want to prove two things — the loop eventually terminates, and it

establishes some desired postcondition.

• Proving that it terminates — define a metric that you know decreases by

some minimum amount with every trip through the loop, and when it goes

below some threshold value, the loop ends.

• Proving that it establishes the postcondition — use a loop invariant.

• (I say “prove” here, since this can be done very rigorously, but in practical

situations an informal version is usually good enough.)

Slide 16

Reasoning About Loops, Continued

• What’s a loop invariant? in the context of reasoning about programs, it’s a

predicate (boolean expression using program variables) that

– is true before the loop starts, and

– if true before a trip through the loop, with the loop condition true, is also

true after the trip through the loop.

If you can prove that a particular predicate is a loop invariant, after the loop

exits, you know it’s still true, and the loop condition is not. With a well-chosen

invariant, this is enough to prove useful things.

• (Might be worth noting that compiler writers have a different definition —

some computation that can be moved outside the loop.)



CSCI 3323 September 19, 2011

Slide 17

Reasoning About Loops, Simple Example

• Loop to compute sum of elements of array a of size n:

i = 0; sum = 0;

while (i != n) {

sum = sum + a[i];

i = i + 1;

}

At end, sum is sum of elements of a.

• Does this work? well, you probably believe it does, but you could prove it

using the invariant:

sum is the sum of a[0] through a[i-1]

Slide 18

Reasoning About Loops, Example

• Euclid’s algorithm for computing greatest common divisor of nonnegative

integers a and b:

i = a; j = b;

while (j != 0) {

q = i / j; r = i % j;

i = j; j = r;

}

At end, i = gcd(a, b).

• Does this work? work through some examples and gain some confidence —

or prove using invariant:

gcd(i, j) = gcd(a, b)

and the math fact gcd(n, 0) = n



CSCI 3323 September 19, 2011

Slide 19

Minute Essay

• Tell me about your experience (if any!) with writing programs that involve

concurrency — multithreaded, message-passing, communicating over

sockets, etc.

• Give an example (other than those discussed) of a situation in which you think

a solution to the mutual-exclusion problem would be needed.


