
CSCI 3323 October 24, 2018

Slide 1

Administrivia

• Reminder: Homework 4 due today.

• Homework 5 on the Web. Written problems due next Wednesday,

programming problems the following Monday.

Slide 2

Paging and Virtual Memory — Recap/Review

• Basic idea is fairly simple: If there are more pages in the union of all process’s

address spaces than will fit into main memory, keep some (we hope the

less-active ones) on disk.

• With this addition, page faults now either mean “invalid address” or “page not

in memory but on disk”. Page-fault interrupt handler must decide which, and if

it’s the latter, arrange to bring it in. Similar processing if we want to give a

process a new page.

• If memory is not full, not too hard, but if it is? “Steal” a frame from its current

owner (write contents to disk first if need be). Choice of page to steal

determined by “page replacement algorithm”.

Many such algorithms possible, as discussed last time. (Nice summary in

textbook as Figure 3-21.)



CSCI 3323 October 24, 2018

Slide 3

Paging — Operating System Versus MMU

• Some aspects of paging are dealt with by hardware (MMU) — translation of

program addresses to physical addresses, generation of page faults, setting

of R and M bits.

• Other aspects need O/S involvement. What/when?

Slide 4

Paging — Operating System Involvement

• Process creation requires setting up page tables and other data structures.

Process termination requires freeing them.

• Context switches require changing whatever the MMU uses to find the current

page table.

• And of course it’s the operating system that handles page faults!

• Some details . . .



CSCI 3323 October 24, 2018

Slide 5

Processing Memory References — MMU

• Does cache contain data for (virtual) address? If so, use it.

• If not, does TLB contain matching page table entry? If so, generate physical

address and send to memory bus.

• If not, does page table entry (in memory) say page is present? If so, put PTE

in TLB and continue as above.

• If not, generate page fault interrupt. Transfers control to interrupt handler.

Slide 6

Processing Memory References — Page Fault Interrupt

Handler

• Is page on disk or invalid (based on entry in process table, or other O/S data

structure)? If invalid, error — signal process (possibly terminate).

• Is there a free page frame? If not, choose one to steal (using page

replacement algorithm). If it needs to be saved to disk, start I/O to do that.

Update process table, PTE, etc., for “victim” process. Block process until I/O

done.

• Start I/O to bring needed page in from swap space (or zero out new page). If

I/O needed, block process until done.

• Update process table, etc., for process that caused the page fault, and restart

at instruction that generated page fault.



CSCI 3323 October 24, 2018

Slide 7

Processing Memory References — Details Still To Fill In

• How to keep track of pages on disk.

• How to keep track of which page frames are free.

• How to “schedule I/O” (but that’s later).

Slide 8

Keeping Track of Pages on Disk

• To implement virtual memory, need space on disk to keep pages not in main

memory. Reserve part of disk for this purpose (“swap space”); (conceptually)

divide it into page-sized chunks. How to keep track of which pages are

where? (Figure 3-28 in textbook.)

• One approach — give each process a contiguous piece of swap space.

Advantages/disadvantages?

• Another approach — assign chunks of swap space individually.

Advantages/disadvantages?

• Either way — processes must know where “their” pages are (via page table

and some other data structure), operating system must know where free slots

are (in memory and in swap space).



CSCI 3323 October 24, 2018

Slide 9

Paging — Other Design Issues/Choices

• Demand paging versus prepaging.

• Global versus local allocation.

• “Paging daemon” that tries to keep a supply of free page frames.

• What to do if page to be replaced is waiting for I/O — probably trouble if we

replace it anyway, since the pending I/O, when it completes, may write to a

physical address. Solutions include “locking” pages, or doing all I/O to O/S

pages and then moving data to user pages.

Slide 10

Modeling Page Replacement Algorithms

• Intuitively obvious that more memory leads to fewer page faults, right? Not

always!

• Counterexample — “Belady’s anomaly”, sparked interest in modeling page

replacement algorithms.

• Modeling based on simplified version of reality — one process only, known

inputs. Can then record “reference string” of pages referenced.

• Given reference string, p.r.a., and number of page frames, we can calculate

number of page faults. (One of the programming problems will ask you to do

this.)

• How is this useful? can compare different algorithms, and also determine if a

given algorithm is a “stack algorithm” (more memory always means fewer

page faults).



CSCI 3323 October 24, 2018

Slide 11

Sharing Pages

• Shared pages can be useful, but can also present problems.

• Multiple processes running the same program is relatively easy (why?) but

has one potential downside (what?)

• UNIX fork system call is — interesting? — in this context. POSIX definition

says that child process’s address space is basically a copy of the parent’s

address space. What’s the easy-to-implement way to do this? What downside

does that have in current systems? Is there a way to reduce its impact? And

why duplicate in the first place?

Slide 12

Sharing Pages and fork

• Duplicating pages is easy but inefficient, especially if the child process is

going to call execve or something similar right away. Some systems use

“copy-on-write” to improve efficiency.

• Why did the people who designed UNIX require this duplication . . . Possibly

because it makes some things easy (such as setting up parent/child pipes)

and wasn’t very costly when designed. Windows’s system call for creating

processes takes a different approach. Maybe that’s better!



CSCI 3323 October 24, 2018

Slide 13

Sharing Pages, Continued

• One use for shared pages is multiple processes running the same program.

• What about sharing code at a level below whole programs (UNIX “shared

libraries”, Windows DLLs)?

Slide 14

Shared Libraries

• One attraction is somewhat obvious: If code for library functions (e.g.,

printf) is statically linked into every program that uses it, programs need

more memory — seems wasteful if processes can share one copy of code in

memory.

• Another attraction is that library code can be updated independently of

programs that use it. (But is there a downside to that?)

• How to make this happen . . .



CSCI 3323 October 24, 2018

Slide 15

Shared Libraries, Continued

• A good-and-bad aspect is that if the shared code is updated, all programs that

use it are affected.

• How to make this happen . . . At link time, programs get “stub” versions of

functions. References to real versions resolved at load time.

• Resolving references to shared code at load time — finer-grained version of

“relocation problem”, no? and fixable by making sure library contains only

“position-independent code”.

• (Some details of how this plays out in Linux next time?)

Slide 16

Memory-Mapped File I/O

• Worth mentioning here that some systems also provide a mechanism (e.g.,

via system calls) to allow “mapping” whole files into/from memory.

Reading/writing file is done using paging mechanism.

• If there’s enough memory, this could improve performance.

• (Example in Linux later?)



CSCI 3323 October 24, 2018

Slide 17

One More Memory Management Strategy —

Segmentation

• Idea — make program address “two-dimensional” / separate address space

into logical parts. So a virtual address has two parts, a segment and an offset.

• To map virtual address to memory location, need “segment table”, like page

table except each entry also requires a length/limit field. (So this is like a

cross between contiguous-allocation schemes and paging.)

Slide 18

Segmentation, Continued

• Benefits?

– Nice abstraction; nice way to share memory.

– Flexible use of memory — can have many areas that grow/shrink as

required, not just heap and stack — especially if we combine with paging.

• Drawbacks?

– External fragmentation possible (can offset by also paging).

– More complex.

– “Paging” in/out more complex — issues similar to with

contiguous-allocation.



CSCI 3323 October 24, 2018

Slide 19

Minute Essay

• Another story from long ago: Once upon a time, a mainframe computer was

running very slowly. The sysadmins were puzzled, until one of them noticed

that one of the disk drives seemed to be very busy and asked “which disk are

you using for paging?” The answer made everyone say “aha!” What was

wrong (to make the system so slow)?

• This just about wraps up what I have to say about memory management,

though Monday I’m planning to show some examples illustrating use of

shared libraries and memory-mapped I/O in Linux. Anything else you want to

hear about?

Slide 20

Minute Essay Answer

• The disk being used for paging was the one that was very busy. So, mostly

likely the system was spending so much time paging (“thrashing”) that it

wasn’t able to get anything else done. Usually this means that the system

isn’t able to keep up with active processes’ demand for memory.

(Memory sizes have increased to a point where this isn’t as likely as it once

was. Several years ago we did run into problems with the machines in one of

the classrooms trying to run both Eclipse and a Lewis simulation, and then

more recently with some of them attempting to run a background program

that asked for more memory than its author intended.)


