
CSCI 3366 December 9, 2013

Slide 1

Administrivia

• (Reminders about what’s due when.)

• Sample solutions for all regular homeworks to be on Web.

Slide 2

More Administrivia

• “What about our grades?” You will get information by e-mail as soon as I have

it.

• Recall(?) weights from syllabus.



CSCI 3366 December 9, 2013

Slide 3

Programming Environments, Revisited

• Choice of environments for book was based on how things were when it was

written — MPI fairly dominant for distributed memory and OpenMP for shared

memory, with Java not so widely used for parallel programming but more

familiar/available.

• All three include more than we had time to cover in class, and have continued

to evolve, and then there’s a whole new hardware platform (GPUs) . . .

• (I will leave the rest of the slides in, but we didn’t go over them in class.)

Slide 4

OpenMP Revisited

• OpenMP worksharing constructs define “implicit tasks” (one per thread). We

looked only at parallel loops, but there are also “parallel sections”, which allow

for nesting/recursion.

• OpenMP 3.0 adds support for explicit tasks, which may help with some kinds

of problems (irregular and recursive).



CSCI 3366 December 9, 2013

Slide 5

MPI Revisited

• Even MPI 1.0 includes far more than we could cover in class — many

collective communication operations, communicators, process topologies,

and support for user-defined data types in messages.

• MPI 2.0 and later versions add more — e.g., process spawning and

one-sided communication.

Slide 6

Java Revisited

• Java 1.5 brought into the standard library a lot of classes previously available

as third-party additions — thread pools, locks, various shared-data classes,

etc.

• Java memory model also cleaned up a bit.

• (Curiously enough, though, the need for explicit multithreading in GUIs seems

to have declined, with the notion of the EDT and new classes such as

SwingWorker and timers.)



CSCI 3366 December 9, 2013

Slide 7

OpenCL Revisited

• Graphics processors emerging as a new platform for parallel computing —

hardware is becoming sophisticated enough to support computation beyond

the cards’ original purpose, so why not put it to use?

• No consensus yet about programming environments, but OpenCL might

emerge as a semi-standard, as MPI and OpenMP did.

• We barely scratched the surface of this environment but perhaps did enough

to get past the initial intimidation factor. A brief recap . . .

Slide 8

A Little About GPU Hardware

• Processing hardware typically includes many processors working more or

less in lockstep, each able to do pipelined/vector operations — i.e., SIMD,

making a comeback!

• Typical hardware also includes a possibly-complex memory hierarchy

separate from the memory hierarchy of the “host computer”.



CSCI 3366 December 9, 2013

Slide 9

A Little About Programming for GPU Hardware

• SIMD hardware makes a data-parallel style of programming a good fit. Not

something we really address in our pattern language (yet!), but conceptually

similar to Geometric Decomposition but more closely synchronized.

A.k.a. “stream processing”?

• So, you might express computations as a sequence of whole-array

operations, or in terms of applying a “computational kernel” in parallel to many

data elements. Whole-array operations included in some programming

environments (e.g., Fortran). Current programming environments for GPUs

(NVIDIA’s CUDA, e.g., and OpenCL) use the computational-kernel idea.

• Currently moving data back and forth between host’s memory and GPU’s

memory must be done explicitly. Actually maybe not a bad idea given that it

does take time?

Slide 10

Review of Course

• “PAD I for parallel programming”? We covered:

– Three languages/libraries — OpenMP, MPI, Java.

– How to find and exploit concurrency in programs.

• We also did several running examples and some homeworks . . .



CSCI 3366 December 9, 2013

Slide 11

Review of Homeworks

• Homeworks 1 and 2 — estimating π with Monte Carlo methods. Basic

structure is Task Parallelism. Complication is that you need a thread-safe

RNG.

• Homework 3 — Conway’s game of life. Basic structure is Geometric

Decomposition. Basic idea easy, details a bit messy (particularly for MPI).

• Homework 4 — quicksort. Basic structure is Divide and Conquer.

• For all programs, probably need large problem sizes to get any benefit from

multiple UEs. Even then performance may not be amazingly good, but the

primary goal is pedagogical rather than practical.

Slide 12

Minute Essay

• None — sign in.


