
CSCI 4320 October 7, 2003

Slide 1

Administrivia

• Upcoming due dates:

– Exam 1 next Thursday. Review sheet on Web this Thursday. Review

session possible (think about whether you want one).

– Homework 2 due Thursday. Not accepted past class time Tuesday.

Solutions available Tuesday.

– Homework 3 on Web later today. Due next Tuesday. Not accepted late.

Solutions available Wednesday.

Slide 2

Minute Essay From Last Lecture

• What’s the most interesting thing you learned from reading chapter 2?

Most common answers — “haven’t read it all yet”, something about

scheduling algorithms.

CSCI 4320 October 7, 2003

Slide 3

One More Recap — Scheduling Algorithms

• Main idea — decide which process to run next (when running process exits,

becomes blocked, or is interrupted).

• Many possibilities, ranging from simple to complex. Real systems seem to

use hybrid strategies.

• How to choose one?

– Be clear on goals.

– Maybe evaluate some possibilities to see which one(s) meet goals —

analytic or experimental evaluation.

– Build in some tuning knobs — “separate policy from mechanism”.

Slide 4

Deadlocks — Introduction

• Some resources should not be shared — among processes, computers, etc.

• To enforce this, o/s (or whatever) provides mechanism to give one process at

a time exclusive use, make others wait.

• Possibility exists that others will wait forever — deadlock.



CSCI 4320 October 7, 2003

Slide 5

Resources

• “Resource” is anything that should be used by only one process at a time —

hardware device, piece of information (e.g., database record), etc.

Can be unique (e.g, database record) or non-unique (e.g., one block of a

fixed-size disk area such as swap space).

• Preemptible versus non-preemptible — preemptible resources can be taken

away from current owner without causing something to fail (e.g., memory);

non-preemptible resources can’t (e.g., hardware device).

• Normal sequence for using a resource — request it, use it, release it. If not

available when requested, block or busy-wait.

Can easily implement this using semaphores, but then deadlock is possible if

processes aren’t disciplined.

Slide 6

Deadlocks — Definitions and Conditions

• Definition — set of processes is “deadlocked” if each process in set is waiting

for an event that only another process in set can cause.

• Necessary conditions:

– Mutual exclusion — resources can be used by at most one process at a

time.

– Hold and wait — process holding one resource can request another.

– No preemption — resources cannot be taken away but must be released.

– Circular wait — circular chain of processes exists in which each process is

waiting for resource held by next.

• Modeling deadlock — “resource graphs” — examples pp. 165-166.

CSCI 4320 October 7, 2003

Slide 7

What To Do About Deadlocks — Nothing

• One strategy for dealing with deadlocks — “ostrich algorithm” (ignore

potential for deadlocks, hope they don’t happen).

• Does this work? not always, but simple to implement, and in practice works

most of the time.

Slide 8

What To Do About Deadlocks — Detection and Recovery

• How to detect deadlocks — DFS on resource graph, (or if more than one

resource of each type, algorithm of pp. 171–172).

• When to check for deadlocks:

– Every time a resource is requested.

– At regular intervals.

– When CPU utilization falls below threshold.

• What to do if deadlock is found?

– Preemption.

– Rollback.

– Process termination.

• Does this work? yes, but potentially time-consuming, and “what to do”

choices aren’t very attractive!



CSCI 4320 October 7, 2003

Slide 9

What To Do About Deadlocks — Avoidance

• Can base on idea of “safe” states (in which it’s possible to schedule to avoid

deadlock) versus “unsafe” states (in which it’s not). Idea is to avoid unsafe

states.

• “Banker’s algorithm” (Dijkstra, 1965) — idea is to never satisfy request for

resource if it leads to unsafe state. Details on pp. 178–179.

• Does this work? yes, but not much used because it assumes a fixed number

of processes, resource requirements known in advance.

Slide 10

What To Do About Deadlocks — Prevention

• Idea here is to make it impossible to satisfy one of the four conditions for

deadlock.

• Mutual exclusion — don’t allow more than one process to use a resource.

E.g., define a printer-spool process to manage printer.

Solves immediate problem but may produce others.

• Hold and wait — require processes to request all resources at the same time

and either get them all or wait.

Works but may not be possible or efficient.

• No preemption — allow preemption. Not usually possible/desirable.

• Circular wait — impose strictly increasing ordering on resources, and insist

that all processes request resources “in order”.

Works, but finding an ordering may be difficult.

CSCI 4320 October 7, 2003

Slide 11

Deadlocks — Summary

• Take-home message — there’s some interesting theory related to this topic,

but not a lot of practical advice, except for deadlock prevention.

Slide 12

Minute Essay

• What questions do you have about the homeworks and exam?


