CSCT 4320

Slide 1

Slide 2

October 7, 2003

-

Administrivia

o Upcoming due dates:

— Exam 1 next Thursday. Review sheet on Web this Thursday. Review
session possible (think about whether you want one).

— Homework 2 due Thursday. Not accepted past class time Tuesday.
Solutions available Tuesday.

Solutions available Wednesday.

— Homework 3 on Web later today. Due next Tuesday. Not accepted late.

-

Minute Essay From Last Lecture

o What's the most interesting thing you learned from reading chapter 2?

Most common answers — “haven't read it all yet”, something about
scheduling algorithms.

CSCT 4320

Slide 3

Slide 4

October 7, 2003

()

One More Recap — Scheduling Algorithms

o Main idea — decide which process to run next (when running process exits,
becomes blocked, or is interrupted).

e Many possibilities, ranging from simple to complex. Real systems seem to
use hybrid strategies.

e How to choose one?
— Be clear on goals.

— Maybe evaluate some possibilities to see which one(s) meet goals —
analytic or experimental evaluation.

— Build in some tuning knobs — “separate policy from mechanism”.

-

~

Deadlocks — Introduction

o Some resources should not be shared — among processes, computers, etc.

e To enforce this, of/s (or whatever) provides mechanism to give one process at
a time exclusive use, make others wait.

e Possibility exists that others will wait forever — deadlock.

CSCT 4320

Slide 5

Slide 6

October 7, 2003

-

Resources

e “Resource” is anything that should be used by only one process at a time —
hardware device, piece of information (e.g., database record), etc.
Can be unique (e.g, database record) or non-unique (e.g., one block of a
fixed-size disk area such as swap space).

Preemptible versus non-preemptible — preemptible resources can be taken
away from current owner without causing something to fail (e.g., memory);
non-preemptible resources can't (e.g., hardware device).

Normal sequence for using a resource — request it, use it, release it. If not
available when requested, block or busy-wait.

Can easily implement this using semaphores, but then deadlock is possible if
processes aren't disciplined.

~

J

g

Deadlocks — Definitions and Conditions

Definition — set of processes is “deadlocked” if each process in set is waiting
for an event that only another process in set can cause.

Necessary conditions:

— Mutual exclusion — resources can be used by at most one process at a
time.

— Hold and wait — process holding one resource can request another.
— No preemption — resources cannot be taken away but must be released.
— Circular wait — circular chain of processes exists in which each process is

waiting for resource held by next.

o Modeling deadlock — “resource graphs” — examples pp. 165-166.

~

CSCT 4320

Slide 7

Slide 8

()

What To Do About Deadlocks — Nothing

e One strategy for dealing with deadlocks — “ostrich algorithm” (ignore
potential for deadlocks, hope they don’t happen).

e Does this work? not always, but simple to implement, and in practice works
most of the time.

-

What To Do About Deadlocks — Detection and Recovery

® How to detect deadlocks — DFS on resource graph, (or if more than one
resource of each type, algorithm of pp. 171-172).
e When to check for deadlocks:
— Every time a resource is requested.
— Atregular intervals.
— When CPU utilization falls below threshold.
e What to do if deadlock is found?
— Preemption.
— Rollback.
— Process termination.

e Does this work? yes, but potentially time-consuming, and “what to do”
choices aren'’t very attractive!

October 7, 2003

CSCT 4320

Slide 9

Slide 10

October 7, 2003

-

What To Do About Deadlocks — Avoidance

e Can base on idea of “safe” states (in which it's possible to schedule to avoid
deadlock) versus “unsafe” states (in which it's not). Idea is to avoid unsafe
states.

e “Banker’s algorithm” (Dijkstra, 1965) — idea is to never satisfy request for

resource if it leads to unsafe state. Details on pp. 178-179.

o Does this work? yes, but not much used because it assumes a fixed number

of processes, resource requirements known in advance.

~

-

What To Do About Deadlocks — Prevention

Idea here is to make it impossible to satisfy one of the four conditions for
deadlock.

Mutual exclusion — don't allow more than one process to use a resource.
E.g., define a printer-spool process to manage printer.

Solves immediate problem but may produce others.

Hold and wait — require processes to request all resources at the same time
and either get them all or wait.

Works but may not be possible or efficient.

No preemption — allow preemption. Not usually possible/desirable.

Circular wait — impose strictly increasing ordering on resources, and insist
that all processes request resources “in order”.

Works, but finding an ordering may be difficult.

~

J

CSCT 4320

Slide 11

Slide 12

October 7, 2003

-

Deadlocks — Summary

o Take-home message — there’s some interesting theory related to this topic,
but not a lot of practical advice, except for deadlock prevention.

~

-

o What questions do you have about the homeworks and exam?

