
CSCI 4320 October 7, 2003

Slide 1

Administrivia

• Upcoming due dates:

– Exam 1 next Thursday. Review sheet on Web this Thursday. Review

session possible (think about whether you want one).

– Homework 2 due Thursday. Not accepted past class time Tuesday.

Solutions available Tuesday.

– Homework 3 on Web later today. Due next Tuesday. Not accepted late.

Solutions available Wednesday.
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Minute Essay From Last Lecture

• What’s the most interesting thing you learned from reading chapter 2?

Most common answers — “haven’t read it all yet”, something about

scheduling algorithms.
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One More Recap — Scheduling Algorithms

• Main idea — decide which process to run next (when running process exits,

becomes blocked, or is interrupted).

• Many possibilities, ranging from simple to complex. Real systems seem to

use hybrid strategies.

• How to choose one?

– Be clear on goals.

– Maybe evaluate some possibilities to see which one(s) meet goals —

analytic or experimental evaluation.

– Build in some tuning knobs — “separate policy from mechanism”.
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Deadlocks — Introduction

• Some resources should not be shared — among processes, computers, etc.

• To enforce this, o/s (or whatever) provides mechanism to give one process at

a time exclusive use, make others wait.

• Possibility exists that others will wait forever — deadlock.
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Resources

• “Resource” is anything that should be used by only one process at a time —

hardware device, piece of information (e.g., database record), etc.

Can be unique (e.g, database record) or non-unique (e.g., one block of a

fixed-size disk area such as swap space).

• Preemptible versus non-preemptible — preemptible resources can be taken

away from current owner without causing something to fail (e.g., memory);

non-preemptible resources can’t (e.g., hardware device).

• Normal sequence for using a resource — request it, use it, release it. If not

available when requested, block or busy-wait.

Can easily implement this using semaphores, but then deadlock is possible if

processes aren’t disciplined.
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Deadlocks — Definitions and Conditions

• Definition — set of processes is “deadlocked” if each process in set is waiting

for an event that only another process in set can cause.

• Necessary conditions:

– Mutual exclusion — resources can be used by at most one process at a

time.

– Hold and wait — process holding one resource can request another.

– No preemption — resources cannot be taken away but must be released.

– Circular wait — circular chain of processes exists in which each process is

waiting for resource held by next.

• Modeling deadlock — “resource graphs” — examples pp. 165-166.
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What To Do About Deadlocks — Nothing

• One strategy for dealing with deadlocks — “ostrich algorithm” (ignore

potential for deadlocks, hope they don’t happen).

• Does this work? not always, but simple to implement, and in practice works

most of the time.
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What To Do About Deadlocks — Detection and Recovery

• How to detect deadlocks — DFS on resource graph, (or if more than one

resource of each type, algorithm of pp. 171–172).

• When to check for deadlocks:

– Every time a resource is requested.

– At regular intervals.

– When CPU utilization falls below threshold.

• What to do if deadlock is found?

– Preemption.

– Rollback.

– Process termination.

• Does this work? yes, but potentially time-consuming, and “what to do”

choices aren’t very attractive!
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What To Do About Deadlocks — Avoidance

• Can base on idea of “safe” states (in which it’s possible to schedule to avoid

deadlock) versus “unsafe” states (in which it’s not). Idea is to avoid unsafe

states.

• “Banker’s algorithm” (Dijkstra, 1965) — idea is to never satisfy request for

resource if it leads to unsafe state. Details on pp. 178–179.

• Does this work? yes, but not much used because it assumes a fixed number

of processes, resource requirements known in advance.
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What To Do About Deadlocks — Prevention

• Idea here is to make it impossible to satisfy one of the four conditions for

deadlock.

• Mutual exclusion — don’t allow more than one process to use a resource.

E.g., define a printer-spool process to manage printer.

Solves immediate problem but may produce others.

• Hold and wait — require processes to request all resources at the same time

and either get them all or wait.

Works but may not be possible or efficient.

• No preemption — allow preemption. Not usually possible/desirable.

• Circular wait — impose strictly increasing ordering on resources, and insist

that all processes request resources “in order”.

Works, but finding an ordering may be difficult.
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Deadlocks — Summary

• Take-home message — there’s some interesting theory related to this topic,

but not a lot of practical advice, except for deadlock prevention.
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Minute Essay

• What questions do you have about the homeworks and exam?


