CSCT 4320

Slide 1

Slide 2

October 14, 2003

-

Administrivia

e Reminders:

— Homework 2 final deadline class time today. Turn in at end of class, pick
up sample solution. Programs on Web later today.

— Homework 3 due today by 5pm. Solutions available tomorrow.

— Review session Wednesday at 5pm (tentative — will confirm by e-mail
after 11:20am section).

-

Minute Essay From Last Lecture

o What if anything did you find difficult about the programming part of the
homework? What if anything did you find interesting/useful about it?
Almost half mentioned rusty programming skills.

The point of the first problem (together with the first written question) was to
provide some exposure to system calls in a real-world context. (Also you
probably have a different view now of bash?)

CSCT 4320

Slide 3

Slide 4

October 14, 2003

g

Multiprogramming with Fixed/Variable Partitions —
Recap

o Comparing the two schemes:

— Both based on idea that each process’s memory is one contiguous block
— simple, works well with the simple base/limit MMU described earlier.

— Admissions scheduling required with fixed partitions, probably a good idea
with variable partitions.

— Complexity versus flexibility, memory use.
e Either could be adequate for a simple batch system.
e But...

— Can we somehow have more jobs/processes “in the system” than we have

memory for? Could be useful if processes sometimes wait a long time.

— Can we do something so processes can acquire more memory memory as

they run?
J

-

Aside — Memory Management Within Processes

o What if we don’t know before the program starts how much memory it will
want? with very old languages, maybe not an issue, but with more modern
ones it is.

l.e., we might want to manage memory within a process’s address space.
e Typical scheme involves
— Fixed-size allocation for code and perhaps static data.

— Two variable-size pieces (“heap” and “stack”) for dynamically allocated
data.




CSCT 4320

October 14, 2003

Slide 5

Slide 6

Swapping

o Idea — move processes into / out of main memory (when not in main

memory, save on disk).

(Aside — can we run a program directly from disk?)

Addresses both questions from previous slide; could also provide a way to

“fix” fragmentation.

L]

Implies another level of scheduling (what to swap in/out).

L]

Makes non-dynamic solutions to relocation problem unfeasible; MMU-based
solution still works, though, and for memory protection.

Consider tradeoffs again — complexity versus flexibility, efficient use of

memory.

~

Simple Memory Management — Recap

Contiguous-allocation schemes are simple to understand, implement.

L]

But they're not very flexible — process’s memory must be contiguous,
swapping is all-or-nothing.

Can we do better? yes, by relaxing one or both of those requirements —

“paging’.

CSCT 4320

Slide 7

Slide 8

October 14, 2003

-

Paging

e Idea — divide both address spaces and memory into fixed-size blocks

(“pages” and “page frames”), allow non-contiguous allocation.

e Consider tradeoffs yet again — complexity versus flexibility, efficient use of

memory.

Paging — Mapping Program to Physical Addresses

One consequence — mapping from program addresses to physical
addresses is much more complicated.

How? “page table” for each process maps pages of address space to page
frames; use this to calculate physical address from program address.

(Are there page sizes for which this is easier?)

As with base/limit scheme, makes more sense to implement this in MMU.

(Notice again interaction between hardware design and o/s design.)

Could let page table size vary, but easier to make them all the same (i.e., each
process has the same size address space), have a bit to indicate valid/invalid
for each entry. Attempt to access page with invalid bit — “page fault”.

J




CSCT 4320 October 14, 2003 CSCT 4320

October 14, 2003

Paging and Memory Protection, Page Sizes Paging — Recap
o This scheme also provides memory protection. (How?) o Recall idea — divide address space and physical memory into fixed-size
R blocks. Details follow from this basic idea. More complex, but more flexible.

o We could also use it to allow processes to share memory. (How?)

o How big to make pages? compare extreme cases (really big, really small). ® Things tolook at more:
— Getting acceptable performance.

Slide 9 Slide 11 — Dealing with large address spaces.
— Details of using this idea to provide virtual memory.
Paging and Virtual Memory

Performance / Large Address Spaces

e |dea — extend this scheme to provide “virtual memory” — keep some pages

e Even with good choice of page size, serious performance implications —
on disk. Allows us to pretend we have more memory than we really do.

page table can still be big, and every memory reference involves page-table

. access — how to make this feasible/fast?
e Compare to swapping.

Consider several options — compare access time, cost, context-switch time:
Slide 10 Slide 12 — Keep page table for current process in registers.
— Keep whole page table in main memory, pointed to by special register.
— Use multilevel page tables. (More about this later.)

— Use inverted page tables (one entry per page frame). (More about this
later.)

If page tables are in memory, performance improves with “translation
lookaside buffer” (TLB) — special-purpose cache.




CSCI 4320 October 14, 2003

( )

e Reminder — turn in homework.

® Given a page size of 64K (2'6), 64-bit addresses, and 4G (23?) of main
memory, at least how much space is required for a page table?

Slide 13




