
CSCI 4320 November 28, 2005

Slide 1

Administrivia

• Reminder: Homework 4 due today.

• Homework 5 (fairly short) on Web; due next Monday. Homework 6 (also
short) later this week.

Slide 2

Files and Filesystems — Overview

• Very abstract view — requirements for long-term information storage are:

– Store large amounts of information.

– Have information survive past end of creating process.

– Allow concurrent access by multiple processes.

• Usual solution — “files” on disk and other external media, organized into “file
systems”.

• In terms of the two views of an o/s:

– “Virtual machine” view — filesystem is important abstraction.

– “Resource manager” view — filesystem manages disk (and other device)
resources.

• We’ll look first at the user view, then at implementation.



CSCI 4320 November 28, 2005

Slide 3

File Abstraction

• Many, many aspects of “file abstraction” — name, type, ownership, etc., etc.
Most involve choices/tradeoffs.

• In the following slides, a quick tour of some of the major ones, with some of
the possible variations.

Slide 4

File Abstraction, Continued

• File names — always “text string”, but some choices: maximum length?
case-sensitive? ASCII or Unicode? “extension” required?

• File structure — how file appears to application program:

– Unstructured sequence of bytes — maximum flexibility, but maybe more
work for application.

– Sequence of fixed-length records — widely used in older systems, not
much any more.

– Tree (or other) structure supporting access by key.



CSCI 4320 November 28, 2005

Slide 5

File Abstraction, Continued

• File types — include “regular files”, also directories and (in some systems,
e.g. UNIX) “special files”. Regular files subdivide into:

– ASCII files — sequences of ASCII characters, generally separated into
lines by line-end character(s).

– Binary files — everything else, including executables (format dictated by
o/s’s expectations), various archives, MS Word format, etc., etc.

• File access — sequential versus random-access.

• File attributes — “other stuff” associated with file (owner, protection info, time
of creation / last use, etc.)

Slide 6

File Abstraction, Continued

• File operations (things one can do to a file) include create, delete, open,
close, read, write, get attributes, set attributes. Example program using
system calls on p. 390.

• Many systems also support operations for “memory-mapped files” (read
whole file into memory, process there, write back out).



CSCI 4320 November 28, 2005

Slide 7

Directory/Folder Abstraction

• Basic idea — way of grouping / keeping track of files. Can be

– Single-level (simple but restrictive).

– Two-level (almost as simple, better if multiple users, but also restrictive).

– Hierarchical.

• Implies need for path names, which can be absolute or relative (to “working
directory”).

• Operations on directories include create, delete, open, close, read, add entry,
remove entry.

Slide 8

Filesystem Implementation — Overview

• Recall basic organization of disk from chapter 5:

– Master boot record (includes partition table)

– Partitions, each containing boot block and lots more blocks.

• How to organize/use those “lots more blocks”? Must keep track of which
blocks are used by which files, which blocks are free, directory info, file
attributes, etc., etc.

Typically start with superblock containing basic info about filesystem, then
some blocks with info about free space and what files are there, then the
actual files.



CSCI 4320 November 28, 2005

Slide 9

Implementing Files — Contiguous Allocation

• Key idea — what the name suggests, much like analogous idea for memory
management.

• How well does it work? consider simplicity, speed (both sequential and
random access), possibility of fragmentation (wasted space).

• Widely used long ago, abandoned, and now useful again for write-once
media.

Slide 10

Implementing Files — Linked-List Allocation

• Key idea — organize each file’s blocks as a linked list.

• How well does it work? consider simplicity, speed (both sequential and
random access), possibility of fragmentation (wasted space).



CSCI 4320 November 28, 2005

Slide 11

Implementing Files — Linked-List Allocation With Table
In Memory

• Key idea — keep linked-list scheme, but use table in memory (File Allocation
Table or FAT) for pointers rather than using part of disk blocks.

• How well does it work? consider simplicity, speed (sequential and random
access), possibility of fragmentation, anything else? (memory use?)

Slide 12

Implementing Files — I-Nodes

• Key idea — associate with each file a data structure (“index node” or i-node)
containing file attributes and disk block numbers, keep in memory.

• How well does it work? consider simplicity, speed (sequential and random
access), possibility of fragmentation, anything else? (memory use?)



CSCI 4320 November 28, 2005

Slide 13

Minute Essay

• None — sign in.


