CSCI 4320 September 18, 2006

Administrivia
e (None.)
Slide 1
Minute Essay From Last Lecture

e (Recall question.)

e Typical answers mentioned using inheritance, Java-style interfaces,
composition. Inheritance probably wouldn’t work well here, but the other two
might.

Slide 2




CSCI 4320 September 18, 2006

Interprocess Communication

® Processes almost always need to interact with other processes:

— “Ordering constraints” — e.g., process B uses as input some data produced

by process A.

— Use of shared resources — files, shared memory locations, etc.

Slide 3 e Use of shared resources can lead to “race conditions” — output depends on
details of interleaving.
® Processes must communicate to avoid race conditions and otherwise
synchronize.
e “Classical IPC problems” — simplified versions of things you often want to do.
Mutual Exclusion Problem
e |n many situations, we want only one process at a time to have access to
some shared resource.
e Generic/abstract version — multiple processes, each with a “critical region”
(“critical section”):
while (true) {
Slide 4 do_cr(); /1 must be "finite"

do_non_cr(); /1 need not be "finite"

}

e Goal is to add something to this code such that:
1. No more than one process at a time can be “in its critical region”.
2. No process not in its critical region can block another process.
3. No process waits forever to enter its critical region.
4

. No assumptions are made about how many CPUs, their speeds.




CSCI 4320 September 18, 2006

Mutual Exclusion Problem, Continued

e We'll look at various solutions (some correct, some not):

— Using only hardware features always present (some notion of shared

variable).
— Using optional hardware features.
Slide 5 — Using “synchronization primitives” (abstractions that help solve this and
other problems).
e Recall that a correct solution
— Must work for more than 1 CPU.

— Must work even in the face of unpredictable context switches — whatever
we're doing, another process can pull the rug out from under us between

“atomic operations” (machine instructions).

. J

Sidebar: Atomic Operations

e “Atomic” operation — indivisible, executes without interference from other

processes.

e Which of the following are atomic?

-X = 1;
Slide 6 X = x + 1
— ++X;
—if (x =0) x =1;




CSCI 4320 September 18, 2006

Proposed Solution — Disable Interrupts

e Pseudocode for each process:

while (true) {

di sable_interrupts();

do_cr();

enabl e_interrupts();
Slide 7 do_non_cr();
}

e Does it work? reviewing the criteria ... No.

~N

Proposed Solution — Simple Lock Variable

e Shared variables:
int lock = 0;

Pseudocode for each process:

while (true) {

Slide 8 while (lock !'= 0);
lock = 1;

do_cr();

Il ock = 0;
do_non_cr();

}

e Does it work? reviewing the criteria . .. No.

. J




CSCI 4320

September 18, 2006

Slide 9

Slide 10

Proposed Solution — Strict Alternation

e Shared variables:

int turn = 0;

Pseudocode for process pO: Pseudocode for process p1:
while (true) { while (true) {
while (turn !'= 0); while (turn !'= 1);
do_cr(); do_cr();
turn = 1; turn = 0;
do_non_cr(); do_non_cr();
} }

e Does it work? reviewing the criteria . .. No.

e Do you (think you) see why the various solutions to the mutual exclusion

problem so far work / don’t work?

e Give an example (other than those discussed) of a situation in which you think

a solution to this problem would be needed.




