Conditionals

9-20-2002

Opening Discussion

What did we talk about last class?

Printing a binary representation. Some
people wrote how to do it with loops and
conditionals, but we haven't learned that
yet. We can do it now with bitwise
operators.

I've been playing with binary and bitwise
operators packing colors for a program for
PAD2.

What can we do now?

We have seen how to declare variables,
write expressions involving numeric
expressions, print things to screen, and
read input from the user.

This allows us to do almost any sort of
straightforward calculation that we would
do on a calculator. An example might be
figuring out how much a meal should cost
or how much someone makes.

Branching Code and
Conditionals

The problem with what we know now is
that the same statements get executed
every time we run the program. It always
goes from the top to the bottom, straight
through.

Today we will fix that by allowing our
code to branch with conditional
statements. With a conditional we can
say that certain parts of the code only
should execute under certain conditions.

Example

What if we wanted to calculate the wages
of a person where we took into account
overtime if the person worked more than
40 hours in a week? What if we they got
double time for hours over 60?

That is difficult to do if the same code
gets executed all the time. For that it
helps to have conditional execution.

if-else Statements

The most basic conditional is the if
statement. It can have an else clause but
doesn’t have to.

if(condition) { i f(condition) {
statenmentsl; or st at enents;
} else {

st at enent s2;
}
If the condition is true, the first set of
statements is executed. Otherwise the

else block is executed if one is there.

Boolean Expressions

The condition should be a form of Boolean
expression. This is an expression that is
true or false.

The way that things work in C, Booleans
are actually integers where zero is false
and everything else is true. This can
cause problems unless you are careful.
Boolean expressions typically have

comparisons joined together by Boolean
operators.

Comparisons

The comparisons you use in Java are like
what you are used to, though perhaps
typed in a bit differently.

== tests equality (this can cause you
problems)

1= tests inequality
<, <= for less than or less than or equal to

>, >= for greater than or greater than or
equal to

Boolean Operators

We often want to combine simple
comparisons or other Boolean expressions
together to make more complex Boolean
expressions. We do this with Boolean
logic operators.

|| - or (this is a short-circuit operator)

&& - and (this is a short-circuit operator)

AN - xor

! - not

Order of Operations

As with numeric operators there is a fixed
order in which operators are evaluated in
an expression for Boolean operations as
well. Again here, when in doubt use
parentheses.

In general the comparisons happen before

the Boolean operators. && should happen
before ||.

Revisit the Wages Example

So now let's write some code for the
example of calculating wages. Has
anyone thought of how you could do this
example without conditionals?

Minute Essay

Write a section of code that checks a variable
age and sets a variable rate depending on it. If
age is less than 30 set rate to 0.1*age. If rate
is between 20 and 50 add another 0.05*age to
what rate was.

Assignment #2 is due today. I need the paper
part before I leave campus and the code in my
e-mail before midnight.

Interesting note: handhelds are a reason to
know the bitwise tricks even with modern
computer power.

