

Mazes and Superior Sorts

11-29-2010

Opening Discussion

 Solutions to the IcP.
 Minute essay comments

 Translating human thoughts into computer logic.
 Learning to write recursive functions.
 How do we make recursive functions call

themselves more than once?

 Watching the Hanoi algorithm.

Mazes

 My favorite example of recursion is mazes.
 Consider a maze as a 2-D grid with each

square either filled or not.
 Now the challenge is to find the length of the

shortest path through the maze.
 How do you do that?

Superior Sorts

 We can also use recursion to write some better
sorts.

 All of our old sorts could have been written with
recursion, but only as a substitute for iteration.

 With recursion we can do sorts that work by
repeatedly breaking the set down then work
recursively on the pieces.

 Do they do the work on the way down the stack
or back up?

 Work fairly well on lists.

Merge Sort

 Simple description
 Break the collection in two and make a recursive

call on the two halves.
 Merge together the sorted results with an O(n)

merge.

 Can't be done in place, but that is
advantageous for lists which are immutable.

 O(n log n) all the time.

Quick Sort

 Description
 Pick a pivot and move everything less than the pivot

below and everything greater above.
 Recurse on the two sides of the pivot.

 Can be done in place, but Scala collection
methods allow very simple form that isn't in
place. We'll wrote both.

 Speed depends on pivot selection. O(n log n)
on average with random data, but can be as
bad as O(n2) with bad pivots.

Minute Essay

 What problems could we have with our maze
algorithm?

 Not IcP because of assignment.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

