

Boolean Expressions and
Functions

9-14-2011

Opening Discussion

 Do you have any questions about the quiz?
 Minute essay comments

 Roller skating class does allow in-line.
 The joy of programming and the agony of silly

errors.
 Tabbing in and making tabs small.
 Putting things into your web space.
 Bias and mantissa.
 Are there limits for conditionals/Booleans?

 Let's finish what we were doing last class.

Motivation

 I want to have a function that tells me if two
squares intersect.

 The function will be given the x and y location
of the center of each square as well as the
length of the side of each square.

 It should return a Boolean telling if they
intersect.

Conditional Logic

 We talked about comparisons of values in the
last class.

 We can also combine Boolean expressions
together using Boolean logic.

 There are four Boolean operators:
 && for and
 || for inclusive or
 ^ for exclusive or
 ! for not

Short Circuit Operators

 The && and || operators are short circuit
operators.

 This means that if the value is known after
evaluating the first operand, the second
operand won't be evaluated.

 This can prevent errors.
 Let's look at an example of this with division by

zero.

Nesting ifs

 What you put in an if can be any expression or
statement.

 As a result, you can put an if inside of another
if.

 As we will see, Scala doesn't care what you
nest inside of things. You write the logic that
makes sense to you and says what you want to
say.

Functions in Math

 Let's review the concept of functions from math.
 In algebra a function would take one or more

values and give you back a value. The values
were generally numbers.

 In higher level math this is generalized with
things like sets.

 In math functions the same input always leads
to the same result.

Functions in Programming

 The concept of a function is critically important
to programming.

 Functions can take one or more arguments and
give us back values. (Most languages allow
only one return value.)

 Let's think of some examples of functions that
we could write.

Functions in Scala

 We declare functions in Scala using def. Here
is the general form.
 def name(arg1:Type1, arg2:Type2, ...):Type =

expression

 The argument list can have zero or more
elements. If there are zero even the
parentheses can be left off.

 Function arguments must have types.
 The return type is optional, but it is

recommended.

Why Functions?

 Functions are used in programs for a number of
reasons.
 Reduce code duplication. You can call the same

function multiple times and only write it once.
 Improve readability and maintainability. Good

function names make it easier to read. Small
functions are easier to test and debug.

 Break problems down/problem decomposition.

Problem Decomposition

 Never solve a hard problem. If a problem is
hard, break it into smaller problems that are
easier. Repeat until you are only solving trivial
problems.

 Top-down
 This is the “normal” approach where you start with

the full problem and break it into pieces.

 Bottom-up
 Sometimes you realize that different trivial pieces

will be useful and build up from those.

Minute Essay

 What are your thoughts so far on the book?
Have you been reading? How much is it
helping?

 Remember, there is no class on Friday for the
campus wide curriculum discussion.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

