

Priority Queues and Refactoring

10-12-2011

Opening Discussion

 Do you think you should be allowed a 1-page
cheat sheet for the exam?

Priority Queue ADT

 A priority queue has the same methods as a normal
queue, only the contents are ordered not only be
arrival time, but also by a priority. So dequeue gets
the highest priority object and if several have that
priority, it gets the one that has been there the
longest.

 One way to implement a priority queue is with a
sorted linked list. To make this flexible, you could
have it take a comparison function that tells you the
ordering. That would be provided when the priority
queue is constructed. Or require Ordered.

 What order are the various operations for this
implementation of a priority queue?

Code a Priority Queue

 Let's write a priority queue that uses a doubly-
linked list with a sentinel.

 We'll also made a trait because we will implement
other versions later.

Refactoring

 This is something that you do when you don't want to
change the functionality of your code, but you want to
change how it does something.

 You typically refactor your code when it “smells.” Here
are a few of the many different smells.
 Long method
 Large class
 Duplicate code
 Shotgun surgery
 Switch statements

 Scala tools don't yet refactor well, but the language
does.

Recursion

 You should have learned about recursive
functions in 1320. A recursive function is simply
a function that calls itself.

 You can use recursion to imitate loops, but we
won't do that very often in C/Java/Scala. Where
recursion comes in really handy is when a
function needs to test more than one alternative
at a time.

 This works nicely because the call stack
remembers where you are in a given function
so when you return back, you can take off from
that point again.

Maze Solving

 One of my favorite recursive algorithms is maze
solving. This is a special case of graph
traversals which are common problems in CS.

 We'll use a 2D array of Ints as our maze and
we can even put this into our drawing program.

 I want to write code to find the shortest path
through a maze or count all paths through a
maze.

 We can try to make this nice and graphical as
well so it fits properly into our drawing program.

Formula Parsing

 Another one of my favorite recursive algorithms
is formula parsing. This allows us to have the
user type in a function and our code can
evaluate it.

 We do this through “divide and conquer”. We
split the formula in two across the lowest
precedence operator then recursively evaluate
the two halves.

 We can use this to put function plotting into our
program if we give it the ability to handle a
variable.

Minute Essay

 Can you think of uses for priority queues in your
project?

 Review session on Sunday. I'll send an e-mail
with the time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

