

Recursive Sorts and Trees

10-24-2011

Opening Discussion

 Schedule changes.

Merge Sort

 Break in half repeatedly on the way down.
Recursively sort on each half.

 Merge sorted parts on the way back up.
 Can't happen in place because merge

operation can't be done in one array.

Quicksort

 Can be done in place.
 Pick a pivot.
 Move all other elements either before or after the

pivot as needed.
 Recurse on the stuff before and after the pivot.

 Does all work on the way down, nothing on the
way up.

 Inefficient List/Vector version is really short.

What is a Tree?

● You are all familiar with what normal trees look
like. In CS we use the term somewhat
differently, and more formally.

● To describe trees we need some basic
terminology
 Node - an element of a tree. One node is

designated as the “root”
 Edge - a directed connection from one node

to another.

Tree Criteria

● Every node, C, has exactly one incoming edge
from another node, P. P is said to be the
parent of child node C. Root has 0.

● There is a unique path from the root to any
node. The number of edges on that path is
called the path length. It is also called the
depth of the node.

● A node with no children is called a leaf. The
path length from a node to the deepest leaf in
the height of that node.

More Terms

● Following the parent-child analogy, children of
the same node are called siblings. We also call
any node on a path below a given node a
descendant and any above an ancestor.

● You might also hear the size of a node referred
to as the number of descendants of a node,
including itself.

● We can also define a tree as either empty, or a
root with zero or more subtrees where the root
connects to the roots of those subtrees.

General Tree Implementation

● In a general tree, each node can have zero or
more children. That is a lot of flexibility. We
want a class to represent nodes. To get this
flexibility we can use a linked list. Each node
has pointers to a first child and the next sibling.

● It might be just as easy to have the child
member be an Buffer that we put Nodes in.
File systems are a good example of this.

Traversals

● As with any data structure one of the things you
want to be able to do is to traverse through all
the elements.

● Think for a while about how you would do this?
There is even a question about the order you
traverse them in. Do you want to process a
node before you process its children or after? If
before we call it a preorder traversal. If after it
is a postorder traversal.

Traversals and Recursion

● The simplest way to do a traversal is through
recursion. If you want to do it with a loop you
have to implement a data structure to store
some nodes or have the tree specially set up.

● The traverse function takes a node and calls
itself once with each child node. It also does
whatever the visit operation is.

● Preorder does a visit before going to children
and postorder visits after going to children.

● Breadth first uses a queue, not recursion.

Coding

 For our first example of a tree, I want to make
our formula parser parse to a tree.

 If we introduce variables we might evaluate the
same formula many times with different values.
It is inefficient to do the same string processing
over and over.

 It is more efficient to parse the string once and
build a tree that represents the formula then do
the evaluation on that tree.

 Let's code this.

Minute Essay

 Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

