

Concurreny Library

9-14-2011

Opening Discussion

 Minute essay comments
 Cores and stressing machines.

 IcP solutions

Motivation

 The future is parallel.
 Core counts are growing but clock speed isn't

and neither is single thread performance.
 Software developers are behind the curve on

this.

wait/notifyAll

 Allows synchronization between threads. A
thread can wait and it won't restart until another
thread notifies it.

 Put wait in while loop that checks a Boolean
flag.

 Always use notifyAll instead of notify. Failure to
do so leads to deadlocks.

 These must be called from inside of a
synchronized block.

java.util.concurrent

 Java 5 added the java.util.concurrent package
and others below it.

 Provides better ways to do common tasks for
parallel.

Executors

 Use the proper one of these to start threads
instead of making them manually.

 Allows Callable[A] and Future[A] which return a
value.

Parallel Data Structures

 BlockingQueue
 ConcurrentMap
 CountDownLatch
 CyclicBarrier
 Exchanger
 PriorityBlockingQueue
 Semaphore
 Scala provides some support for basic

collections.

Locks

 More flexible than synchronized.
 Provides extra power when needed. Particularly

for locking across method calls.

Atomics

 Data values with atomic access.
 Faster and easier than doing your own

synchronization.

Code

 I want to get commands working so that we can
play with some of this in the drawing program.

Minute Essay

 How might you break parts of your project code
into different threads to take advantage of many
cores?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

