
Linked Lists and Iterators

2-22-2005

Opening Discussion
 What did we talk about last class?
 Do you have any questions about the

assignment? Remember that the design
is due today.

 Why would you want to use a singly
linked list or any other type for that
matter? Sorting linked lists?

 Linked data structures in general.

Code for the Singly Linked
List

 Let’s review the code for a basic singly
linked list. In particular, note the
recurring pattern of walking a list. That is
a very important pattern for you to
recognize though you won’t be specifically
using it much in the project.

Circular Linked Lists

 It is also possible to build a list where the
“tail” points back to the “head”. In this
case those two terms really aren’t all that
well defined.

 Instead we can have a pointer anywhere
in the list. We still can’t walk backwards,
but we can walk all the way around to get
to anything we want.

Doubly Linked Lists

 Another variation on lists that can be
useful is the doubly linked list. In a doubly
linked list, every element knows both the
one before it and the one after it. With
this added in, you can delete an element
without walking the list, or add one
without having to go looking for the
previous one.

 These require a bit more work.

Sentinels

 One way to help simplify linked list code,
especially for doubly linked lists, is to add
a sentinel.

 This is a special node that signifies an
“end” of the list. We can put it at the
beginning and the end by making it a
circular list.

 Doubly linked lists with sentinels are
perhaps that easiest type of list because
they lack special case code.

•Code for a Doubly Linked
List

 Now let's look at code for a doubly linked
list with a sentinel. You should note that
this code is much simpler in many ways
because it lacks all the special cases.

Iterators
 You have now seen patterns for walking through

the elements of an array and a linked list. These
are very significant patterns when we are dealing
with low level code. However, they are also very
different and can’t be easily interchanged. We
would like a pattern for walking through the
elements of any container, whether it be an
array, a linked list, or other things we will discuss
later.

 To do this, we introduce the concept of an
iterator.

Iterators Continued

 As the name implies, and iterator lets us
iterate through the elements of a
container. Java has an Interface called
Iterator that has three methods. Let’s go
to the Java API to look at those methods.

 Java also has a similar construct with a
less common name called an
Enumeration. This was used in older Java
libraries.

Using an Iterator

 If we have some type of container, cont,
that can give us an Iterator then we can
use the following loop structure to walk
through the elements of that container,
regardless of the nature of the container.

 for(Iterator iter=cont.iterator(); iter.hasNext();)
 What would an Iterator for an array

based list look like? How about a linked
list?

Sorting Linked Lists and
Sorted Lists

 Like arrays, linked lists can be sorted.
However, what is easy with each is
different. The easiest sorts with linked
lists build new lists instead of swapping
pieces. (Insertion and Selection are easy.)

 You can also build lists that are always
sorted. These have a different interface
and fall into a completely different set of
data structures which are associative.

Iterator Code

 Let's now go and write an iterator for one
of our linked list classes.

Minute Essay

 The Iterator for a list can be a private
inner class. How would this work? How
can you use it outside of the class if it is
private?

 Remember to generate your design today
and put it out on the web. The working
code is due Thursday.

 The midterm is one week from Thursday.
 Read java.awt and javax.swing.

