
Threads

4-4-2005

Opening Discussion

 What did we talk about last class? Do you
have any code to show?

 Do you have any questions about the
assignment?

 Beauty of recursion.
 Competition being held on Saturday.

Faster Sorting
 Let's review the faster sorts and look at code

for the second.
 Mergesort repeatedly divides the array in two

doing little work until it gets down to one element.
 Then it merges sorted arrays as it comes back
up. This can't be done in place. Always O(n log
n).

 Quicksort picks a pivot and puts all other elements
before or after the pivot then recurses on sides.
Does work going down. Generally O(n log n).

Motivation

 There are many times when we want
programs to effectively be able to do two
or more things at once. Structuring
programs to model this type of behavior in
a single thread of control can be quite
difficult. It also doesn’t allow us to take
advantage of multiple processors that
might be present (will be shortly).

 Multithreading deals with this. It gives us
multiple execution streams in a shared
memory space.

The Thread Class

 Most modern languages have the ability
to do multithreading. It is easier in some
than in others.

 Java provides a simple way of doing this
with the java.lang.Thread class.

 This class can also be useful even if you
aren’t using multiple threads because it
has static methods that will impact the
behavior of the current thread.

Spawning Threads
 To start a new thread, you simply need to

create a Thread object and pass it an
instance of a java.lang.Runnable object.

 Runnable is an interface with one method
in it, run. When the thread object’s start
method is called, the other thread
becomes active, and it will begin
execution at the run method of the
Runnable object. Control returns to the
original thread.

Complexities of Threads
 There are some problems with using

threads and they arise from the fact that
you never know when one will release
control and another one will get it.

 The most serious types of problems with
this are when two threads are effectively
trying to access the same memory at the
same time. As such, we need a new
construct to prevent the wrong thread
from taking control at certain times.

Synchronized Methods

 The primary way that you can prevent
problems with sections of code trying to
access the same memory at once is
through the use of the synchronized
keyword.

 When this keyword is put in front of a
function, it puts a lock on the monitor for
that object/class that prevents other
synchronized methods from executing.

wait/notify
 The other way to control threads is with

the wait and notify methods. An object
can cause one thread to wait when it
needs something to happen. When that
thing happens, the other method needs to
call notify on the object that did the wait.

 This is more efficient than having a tight
loop that just checks a flag variable.

 Wait must be called in a synchronized
piece of code.

Thread Priority

 When a thread releases control and it is
time to pick a new thread to execute, the
highest priority thread will be more likely
to get it.

 You can set the priority of threads with
the setPriority method of Thread.

 You can force a thread to release control
before it stops by calling the sleep or yield
methods.

Timers

 If you just want something to happen at
regular intervals, you can use objects like
java.util.Timer or javax.swing.Timer.

 Each of these objects operates slightly
differently. If what you are doing will
interact with Swing objects the second is
recommended. Otherwise the first should
be more generally used.

Minute Essay

 Why do we need to be able to
synchronize threads?

 Remember that the design for assignment
#6 is due today.

