
Files and Streams

4-19-2005

Opening Discussion

 Do you have any questions about the
quiz?

 What did we talk about last class? Do you
have any code to show?

 Do you have any questions about the
assignment?

Motivation
 One of the most important things we do

on computers is store and access large
collections of data. Typically this is done
with files.

 File access comes in two flavors, random
and sequential. Files of the latter type
are often called streams. In a stream the
basic operation is to get or put the next
byte of data, though more elaborate
wrappers can be put around that.

java.io Package

 The normal way of doing I/O in Java is
with the classes in the java.io package.

 This package has an elaborate class
hierarchy with different classes that play
the different roles for almost everything
you want to do.

 There are also some special classes that
perform specific tasks like the
RandomAccessFile class.

InputStreams and
OutputStreams

 The most basic classes in java.io are the
InputStream and OutputStream classes.
These are the base classes for dealing
with streams of bytes.

 Let’s look in the documentation to see the
methods of these classes. The most
significant ones are the read and write
methods though the others can be
important for different tasks.

Streams vs.
Readers/Writers

 The stream classes handle reading and
writing bytes. For text data it can be
easier to read and write character data.
This functionality is provided by the
Reader and Writer classes.

 If you are dealing with raw data you
typically use InputStream and
OutputStream. If you are dealing with
text data you will likely us a Reader or
Writer.

Plentiful Subclasses

 All of these classes have multiple
subclasses to give you more specific
abilities. We can look at these in the
docs.
 File versions for I/O with files.
 Piped versions for connecting different

streams.
 Buffered streams for better speed.
 Data and object streams we will discuss next

class.

Basic Text Input?

 One thing that you might notice is missing
is the ability to do basic text input. We
can do text output with a PrintWriter, but
there is no equivalent for input in Java.

 This design decision was based on the
idea that programs rarely need to do
general text file reading. BufferedReader
allows reading lines of text that can be
parsed.

Binary Files

 Most of the time, the way that we want to
store real data in files is in binary format.
For everything but strings, this takes a lot
less space than storing string equivalents
and is faster to read and write.

 With a binary file, we can write ints,
doubles, and other primitives as well as
strings. The files won’t be human
editable, but we can write code to read
them back in.

Making Streams from
Streams

 One of the keys to being able to use the
java.io library is to notice that many
stream types have constructors that you
pass other streams to.

 These create new streams that have
different functionality and use the stream
that is passed to them to send the data.
In effect, you are wrapping one stream
inside another to get different functionality
for the same source/dest.

Data I/O Streams

 To do basic binary I/O in Java we use the
DataInputStream and DataOutputStream
classes. These can’t exist “on their own”.
We use them to wrap another stream that
actually goes somewhere.

 These classes provide us with the
functionality to read and write basic types.

 Let’s look at these classes real quick.

Object Streams

 We can write pretty much any class out to
a stream by writing one component at a
time, but doing so can be painful.
Sometimes we want to be able to write an
object as a single entity.

 In Java we can do this with
ObjectInputStream and
ObjectOutputStream.

 This is something that most languages
don’t support.

Serialization

 Writing objects to streams is also called
serializing them. The object streams can
only work with two types of data:
primitives and Serializable. For an object
to be serialized it must be Serializable and
all its members must be either primitives
or Serializable.

 Members that are declared transient are
not serialized.

More on Serialization

 Serialization is an incredibly powerful tool.
When combined with reflection in Java it
lets us do things that aren’t possible in
most languages.

 “With great power comes great
responsibility.” This is true in comics and
in programming. You have seen some of
the difficulties of using serialization and
there are many more.

•The File Class

 One other helper class in java.io is the File
class. This class represents a specific file
and allows us to get information about
files. It is written in a way to be largely
platform independent.

 This class also gives us the basic
functionality that we would like to have
when interacting with files.

JFileChooser

 For programs that use files, it is often
nice to bring up a GUI component to let
the user pick a file. This can be quite a
pain. Java makes it easy by providing a
class that automatically views and selects
files.

 By simply creating and “showing” one of
these, we can very easily have the user
specify a file for our program to work
with.

Code

 Let’s write a simple little text editor
program that uses a GUI and allows us to
edit text files.

 We will also use some File objects even
though we could avoid them.

 If we have time, let's also try to make it
so that we can save our drawings and
load them back in by making the drawing
Serializable.

Minute Essay

 Why is inheritance used so much in the
java.io package? How might having it
work that way help you in your
programming?

 Remember that design #7 is due
Thursday though I will be out of town.

