
1

I/O Streams

4/17/2008

2

Opening Discussion

■ Let's look at solutions to the interclass problem.
■ Do you have any questions about the

assignment?
■ Do you have any questions about the reading?

3

Multithreading Mergesort

■ First let's finish off Chris's code to animate the
maze traversal using a thread from an executor.

■ We talked about how we could multithread our
mergesort. Let's go ahead and do it. Instead of
using the standard thread library I want us to use
the facilities in java.util.concurrent.

4

I/O Streams

■ The basic input and output streams that we use
for I/O in Java are part of the java.io package.

■ The package uses significant inheritance with the
hierarchies rooted in the InputStream,
OutputStream, Reader, and Writer abstract
classes. The first two provide I/O based on bytes
while the other two use characters.

■ These base classes have very little functionality
themselves and being abstract they can't even be
instantiated.

5

File Streams

■ In order to use streaming you have to be able to
instantiate something. One set of classes that you
can instantiate is the set of file streams.

■ These classes are FileInputStream,
FileOutputStream, FileReader, and FileWriter.

■ Let's go look at these really quick.

6

Wrapping Streams

■ The file stream classes still don't do much, they
just do what their base class does except they are
actually attached to a file.

■ Being able to just read or write bytes is technically
sufficient for any task, but you wouldn't want to
write much code that way.

■ We gain functionality by “wrapping” stream objects
around one another. This is a design pattern
called the Decorator.

■ Example decorations include buffering,
functionality for binary I/O
(DataInputStream/DataOutputStream), or
formatted printing (PrintWriter).

7

Coding Streams

■ We want to write some code that uses files and
streams. A good example of this would be a
simple text editor.

■ We can add this functionality to our drawing
program or you can write a standalone application.
All it requires is a JTextArea in a GUI with save
and load options.

8

Power of Serialization

■ Now we can take the next step. I want our drawing
application to have the ability to save and load full
drawing. What do we need to change in the code
to make this happen? We basically have to take
the entire object for our tree and write it out to file
one element at a time.

■ The task of converting an object into a stream of
bytes is called serialization. In most languages it is
a tough thing to do. Fortunately, Java has built in
functionality to provide serialization.

9

Serializing in Java

■ To make it so that an object can be serialize we
simply inherit from the interface Serializable. This
is a “mix-in” interface that doesn't have any
methods.

■ The ObjectOutputStream and ObjectInputStream
can be used to write and read whole objects that
are Serializable. If it, or some part of it, isn't
Serializable an exception will be thrown.

■ Elements that you don't want written (or that can't
be written) can be labeled as transient.

10

Challenges

■ “With great power comes great responsibility.”
■ Serialization is truly powerful, but you shouldn't

just make everything Serializable because there
are costs.

■ Anything that inherits from a Serializable
class/interface is itself Serializable.

■ The default serialization can be expensive and
potentially leads to security holes where people
can find out about details of your objects that are
otherwise private.

11

Minute Essay

■ What questions do you have about streams and
files? How does the use of the decorator pattern
improve the flexibility of the library?

■ Interclass problem – Create a program that will
write an array of random doubles to a file and read
it back in. Do this in two ways: using data streams
and using object streams.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

