
1

Java Basics

1/31/2008

2

Opening Discussion

■ Let's look at solutions to the interclass problem.
■ What did we talk about last class?
■ Do you have any questions about the reading?
■ Do you have any questions about the

assignment? Let's go over the requirements for
this first design/assignment and what I'm
expecting from you.

3

Types and Polymorphism

■ What are types in programming languages? What
are some examples of types you are used to?

■ Polymorphism literally means many shapes. In a
programming context it means many types.
Polymorphic code is code that can work with more
than one type.

■ Universal polymorphism allows an infinite number
of types. Ad hoc allows a finite number.
Obviously the former is much more powerful and
that is the type of polymorphism we will normally
care about.

■ Could you write polymorphic code in C?

4

Inheritance

■ The primary way we get polymorphism in Java is
through inheritance.

■ We can specify that one class inherits from
another class with the extends keyword in Java.

■ Many class based object oriented languages
include inheritance. It is a construct in languages
that models the “is-a” relationship. You should
only use inheritance when this relationship
applies. Even when it does apply it isn't always the
the right thing to do.

5

Two Sides of Inheritance

■ Inheritance provides two functions.
■ The original motivation for inheritance, and the

root of the term, is that a subclass implicitly gets a
copy of everything in the class that it is inheriting
from. This means it has all data and functions. It
can't directly access the things that are private.

■ Inheritance also provides subtyping. If class B
inherits from A, then any code that uses A will
work with an object of type B. This is how we get
our polymorphism in Java. We write code that
works with supertypes and it automatically works
with subtypes. This type of polymorphism is called
inclusion polymorphism.

6

Inheritance Hierarchies

■ The standard way of drawing out inheritance is
through a tree-like hierarchy.

■ In UML the arrows point from the subclass to the
superclass. This is because the superclass
doesn’t generally know of all of its subclasses but
the subclasses know of the superclass.

7

Virtual Functions

■ One of the powers of Java is that you don’t always
have to use the methods defined by the
superclass. You can override them in the
subclass.

■ Methods that can be overridden are called virtual
methods. By default all methods in Java are
virtual.

■ A method invocation uses the definition “closest”
to the actual class.

8

Final Keyword

■ If you have a method that you don’t want to ever
be overridden, you can declare it as final.

■ You can also declare an entire class to be final in
which case no subclasses can ever be written to
inherit from it.

■ The final keyword is greatly underused in Java. It
requires thought, but should be used more.

■ All immutable classes should be final. Otherwise
subclasses might be created that aren't immutable
and don't work with existing code.

9

Abstract Keyword

■ You can declare a method in a class that doesn’t
have an implementation. This method must be
labeled as abstract.

■ Any class that contains abstract methods must
also be labeled as abstract.

■ You use abstract functions when a superclass
doesn’t have a good default implementation so all
subclasses should override it and give their
implementations.

10

Inclusion Polymorphism/Project

■ Inclusion polymorphism is what allows my code to
work with what you are going to be writing.

■ You are going to create subtypes of the types I
have defined. My code works with the supertypes
and through inclusion polymorphism it will work
with your subtypes as well.

11

Restrictions in Java

■ Java places some restrictions on inheritance to
simplify the language. The main restriction is that
you can only extend one class. Doing otherwise,
multiple inheritance, tends to make things very
complex.

■ There are times when you want to have a class be
a subtype of two different types though. To allow
this Java has a construct called an interface.
Interfaces have no data (they can have static
data) and all methods in them are abstract. They
only define what you can do with them, not how to
do it. You can implement as many interfaces as
you want.

12

Interfaces Continued

■ Java allows multiple inheritance from interfaces
because they can never create ambiguity.

■ Implementing an interface only provides
subtyping, not code reuse.

■ Subtypes of interfaces need to implement all of the
methods of that interface or they will be abstract.

13

Code

■ Now I want you to watch me construct some code
that uses inheritance and polymorphism.

■ The reading runs you through the classic example
of a shape. We can do something similar with our
ray-tracing code. I also want to use the example of
a simple function of one variable as our supertype
and then create subtypes for specific types of
functions.

14

Minute Essay

■ Does having me code in class help? Do you think I
should try to take more time or less time to do
coding? Remember that time spent coding isn't
spent describing things in lecture.

■ Interclass problem – Make a class hierarchy for
furniture. Try to have it do something in a main to
demonstrate that it works, but I'm not going for any
type of functional application, just some print
statements.

