

Combinatorial Parsers

3-25-2011

Opening Discussion

 Do you have any questions about the quiz?
 Limits of RegEx:

 Yes, there are limits.
 Your understanding of them can be a part.
 Readability can be an issue.

 RegEx are pretty much limited to regular
grammars.

CF Grammars and Internal DSLs

 There are times when you might want to
include elements in your programs that go
beyond regular grammars.

 An example of this would be an internal DSL
(Domain Specific Language). This is like a little
language that is understood in your program.

 Mathematical formulas count as these, but so
would simple commands that have some
structure to them.

Example CF Grammar

 Here is a CF grammar for math expressions:
 expr ::= term { “+” term | “-” term }
 term ::= factor { “*” factor | “/” factor }
 factor ::= floatingPointNumber | “(“ expr “)”

 Use {} for 0 or more and [] for 0 or 1.
 Lots of languages here:

 http://www.antlr.org/grammar/list

http://www.antlr.org/grammar/list

Scala Parsers

 import scala.util.parsing.combinator._

 class Arith extends JavaTokenParsers {

 def expr:Parser[Any] = term~rep(“+”~term | “-”~term)
 def term:Parser[Any] = factor~rep(“*”~factor | “/”~factor)
 def factor:Parser[Any] = floatingPointNumber | “(“~expr~”)”

 }

Conversion Rules

 Put in a class that extends one of the Parsers.
 Productions become methods.
 Results are Parsers. Next class we'll see how to

make it more specific than Any.
 Consecutive symbols are adjoined with ~.
 The {...} is replaced with rep(...).
 The […] is replaced with opt(...).

Using the Parser

 Call parseAll or parse on your class.
 Takes two arguments:

 First argument is the parser to use.
 Second argument is the string to parse.

 Let's code this all up and see it in action.

Minute Essay

 Questions? Can you think of anyplace you
might use this?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

