

Multithreading

1-30-2012

Opening Discussion

 What did we talk about last class?

Motivation

 The future is parallel.
 Core counts are growing but clock speed isn't

and neither is single thread performance.
 Software developers are behind the curve on

this.

Basic Approach

 You can use the java.lang.Thread class to
represent a thread.

 Pass it a new Runnable that you define a run
method in and call start to make it go.

 This makes it very easy to start new threads,
but there are significant pitfalls when mutable
memory is involved.

join

 The join method of Thread will block until that
thread has finished working.

 This is something you can do when you want a
computation to continue only after each of the
threads has completed.

 This only works if you are completely done with
those threads.

Synchronization

 Threads use shared memory and you don't get
significant control over what happens when.

 Race conditions are errors that occur because
of dependence on timing details.

 Bank example.
 You can synchronize on objects to make sure

critical blocks aren't accessed in parallel
 obj.synchronized { … }

 Slow and can cause deadlock.

wait/notifyAll

 Allows synchronization between threads. A
thread can wait and it won't restart until another
thread notifies it.

 Put wait in while loop that checks boolean.
 Always use notifyAll instead of notify. Failure to

do so leads to deadlocks.

Code

 I want to get more working including commands
working so that we can play with some of this in
the drawing program.

Minute Essay

 How many cores does your computer have?
Have you ever tried to keep them all busy?

 The next IcP is Wednesday.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

