
1

Grammars and Chompsky Hierarchy

4-7-2010

2

Opening Discussion

■ What did we talk about last class?
■ Was there anything in the reading you found

interesting?
■ Do you have any questions about the next

assignment?

3

Grammars

■ Grammars are a central concept in theoretical
computer science. They are formal ways of
specifying “languages” or sets of strings and how
those strings can be produced.

■ The general idea of grammars is that you have
productions that map a string to another string.
How these productions are applied varies
between different types of grammars. Some
styles of grammars also have limitations on the
strings that can be on either side of a production.

4

Chomsky Grammars

■ Noam Chomsky developed a hierarchy of
grammars that have become standard models of
different computational abilities.

■ Chomsky grammars have sets of terminal and
nonterminal characters along with a set of
productions and a start symbol.

■ By convention people generally represent
nonterminal characters with capital letters and
terminals with lower case letters.

■ There are four classes of Chomsky grammars:
regular, context free, context sensitive, and
recursively enumerable.

5

Regular Expressions

■ Regular grammars have productions of the
following forms:
 A -> a
 A -> Ba or A -> aB

■ There is a single nonterminal on the left and either
a single terminal or a terminal and nonterminal on
the right. All productions with both a terminal and
nonterminal have to agree on which comes first.

■ These grammars produce languages that can be
generated with finite state automata. They have
no memory.

6

Context Free

■ Context Free (CF) grammars have productions
with a single nonterminal on the left and any string
of terminals and nonterminals on the right.

■ The languages of CF grammars are those
generated by pushdown automata.

■ Most programming languages are defined by CF
grammars.

■ Have limited memory, but access to memory isn't
random.

7

Context Sensitive

■ Context Sensitive (CS) grammars have
productions of the following form.
 α Aβ −> α γ β

■ α , β , and γ are arbitrary strings of terminals
and nonterminals.

■ These are generated by a linear-bounded non-
deterministic Turing machine.

■ These are the least used of the grammars. Even
their theory isn't all that well understood.

8

Recursively Enumerable

■ Recursively enumerable grammars allow any type
of production.

■ These grammars are computationally equivalent
to a full Turing machine so they can generate
anything that you want within the bounds of what
can be computed.

9

Other Grammars

■ There are other types of grammars that aren't part
of the Chomsky hierarchy.

■ I am fond of L-systems. They are an example of a
non-Chomsky set of grammars and they also have
different levels of complexity.

■ The primary difference between L-systems and
Chomsky grammars is that Chomsky grammars
replace one randomly selected nonterminal at a
time while L-systems replace everything at each
step. They also don't technically have terminal
symbols.

10

Perl Regular Expressions

■ Most languages these days have some type of
support for regular expressions. In languages like
Java this is done through libraries.

■ Perl has language features that do regular
expressions so that they are easy to include and
require minimal typing.

■ Appendix B in your book has a brief introduction to
Perl as a whole and also contains more details
about regular expressions.

11

Features

■ Regular expressions basically give you three
capabilities. Each is fairly simple. When combined
they become reasonably powerful and allow us to
do a lot with little effort.

■ Repetition – Use the * to denote 0 or more of the
previous element. Use the + to denote 1 or more.

■ Alternation – The | can separate two possible
options that you allow. Character classes also let
you specify sets of possibilities.

■ Concatenation – The default behavior is for one
thing to follow the next.

■ Parentheses can be used to group things.

12

Special Perl Variables

■ There are a number of special variables in Perl
that get set when a regular expression is matched.

■ $& has the section of the string that matched.
■ $` gives everything before the match and $' gives

everything after the match.
■ The pieces of the match, as set off by

parentheses, are also stored. This is a very helpful
feature. They are in $1, $2, ... They a numbered
by the position of the opening parentheses.

13

Reminders

■ I changed up due dates for assignments so you
should look at the schedule.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

