
1

Memoization and Lang. Performance

4-14-2010

2

Opening Discussion

■ What did we talk about last class?

3

Steps for DP

■ To apply DP we first need to develop the
recurance relationship. Figuring out the best
arguments for this can be a challenge.

■ Next we write a solution that fills in an array with
the answers looking into the array for earlier
solutions.

■ If you need to you can also reconstruct the optimal
solution by walking back down the array and
taking the optimal path.

4

Memoization

■ An alternative to DP that can be almost as fast is
memoization. In this approach we write the
recursive solution, but pass in an extra argument
that stores solutions we have already found.

■ When the function runs it checks the stored values
before doing a recursive call so it won't solve
subproblems that it has solved previously.

■ For some problems this method is a lot easier to
think about. Memoization can also be used for
problems that don't have optimal substructure so
DP can't be applied.

5

Language Performance Characteristics

■ Some types of scientific computing, such as large
scale simulation, are computationally expensive
and hence sensitive to the performance of the
tools used.

■ Different languages strive to achieve different
goals. Performance isn't always high on the list of
goals. Goals also impact the level of detail of
control one has over the machine.

6

Understanding the Machine

■ To know how to make a program run faster we
need to know some things about the machines we
are working on.
 Vector machines/SIMD instructions
 Memory hierarchies
 Pipelining
 Out of order instructions
 MIMD shared memory parallelism

7

Compilers, Interpreters, and JITs

■ Machines don't understand the code you write.
Something most convert it to something the
machine understands.
 Compilers take your code to machine language (often

with a step are assembly in between).
 Interpreters are programs that parse text and execute

it on the fly. Interpreters are slow.
 JIT (Just In Time) Compilers take text or bytecode and

make machine language at runtime.

8

Optimization

■ Because of the complexity of modern
architectures, the performance of machine code
can be greatly impacted by optimizations used by
the compilers.

■ Poor optimization can produce slow code from
any language.

■ Poor programming practice can give you code that
is even slower.

9

Closing Remarks

■ I am supposed to give you a quiz next class.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

