Probability Distributions

2/16/2009

Opening Discussion

- What did we talk about last class?
- Did anyone take the time to play with the things that I posted late on Friday?

Need for Distributions

- Many processes that we might want to simulate involve processes that include some randomness.
- We have already seen that just using a mean value is bad.
- Using the wrong distribution can also mess things up.

Sources of Random Numbers

- Actual Data
 - Good for verification.
 - Limited for real runs.
- Empirical Distribution
 - Build a distribution from the data.
 - Artificially bounded.
- Theoretical Distribution from fit
 - Ideal solution if good distribution can be found.

Continuous Distributions

- The book goes through a bunch of different continuous distributions including lots of details and plots.
 - U(a,b) Uniform
 - Use when you don't know any better.
 - $\exp(\beta) Exponential$
 - Inter-arrival times or failure times.
 - $gamma(\alpha,\beta)$
 - Task completion

More Continuous Distributions

- Weibull(α,β)
 - Task completion of equipment failure. Rough model in absence of data.
- N(μ , σ^2) Normal
 - Errors or sum of many values.
- $LN(\mu,\sigma^2)$ Lognormal
 - Task completion with long tail.
- beta(α_1, α_2)
 - Rough model or distribution of random proportions.

More Continuous Distributions

- PT5(α , β) Pearson type V
 - Time to perform task.
- $PT6(\alpha,\beta)$ Pearson type VI
 - Time to perform task.
- $LL(\alpha,\beta)$ Log-logistic
 - Time to perform task
- JSB(α_1, α_2, a, b) Johnson S_B
- JSU($\alpha_1, \alpha_2, \gamma, \beta$) Johnson S_U
- triang(a,b,m)

Discrete Distributions

- There are also established distributions for discrete values.
 - Bernoulli(p)
 - Coin flip where odds aren't always equal.
 - DU(i,j) Discrete Uniform
 - Several outcomes of equal probability. First cut.
 - bin(t,p) Binomial
 - Number of successes in t Bernoulli trials.
 - geom(p) Geometric
 - Number of tries before a fail.

More Discrete Distributions

- negbin(s,p) Negative Binomial
 - Number of failures before the sth success.
- Poisson(λ)
 - Number of items demanded from inventory.

Empirical Distributions

- You can build your own distributions from empirical data.
- If data isn't binned, sort it.
 - F(x)=indexOf(x)/n if x is data point. Otherwise interpolate.
- If data is binned you can build F(x) from the binned data in a similar way.
- Both have the downside that values have a limited range.

Minute Essay

• Why do you think that there are so many of these different distributions?