More Generation

3/20/2009

Opening Discussion

Any questions?

Convolution

- If $X=Y_1+Y_2+...+Y_n$ and we can generate the Y values we simply do so.
- This is different from composition where the F functions are summed.

Acceptance-Rejection

- This method is somewhat indirect. We generate values and reject them if they aren't good.
- Pick majorizing function t(x)>=f(x) for all x. Let r(x) be t(x)/c where c is the integral over t.
- Process
 - Generate Y from r.
 - Generate U independent of Y.
 - If U<=f(Y)/t(Y), return X=Y. Otherwise goto 1.

Graphical Interpretation

- Let's look at a graphical description of what acceptance-rejection is doing.
- Note that this works best if c is close to one because we only accept 1/c of the generated values.
- It is easy to use a constant t(x), but that isn't always efficient.

Ratio of Uniforms

• I'll let you read about this one in the book. I'm not even going to try doing ti in class.

Special Properties

- Some distributions have other nice properties that we can use to help with generating them.
- Often this is a mathematical relationship to some other distribution.
- You can view convolution as a type of special property.

Generating Continuous Variates

 Now that we know of several ways to generate continuous random variates we should apply them to the different distributions we looked at back in chapter 6.

Uniform

• U(a,b)=a+(b-a)U(0,1)

Exponential

• X=-β In U

2.3

m-Erlang

- Generate $U_1, U_2, ..., U_m$
- $X = -\beta/m \ln(U_1 * U_2 * ... * U_m)$

Gamma

- There are several methods for generating gamma distributions. Because we can't get F⁻ ¹(u) these are generally acceptance-rejection methods.
- Generate U_1 and U_2 .
- V=a ln[U₁/(1-U₁)], Y= αe^{V} , Z=U₁²U₂, W=b+qV-Y.
- If W+d- θ Z>=0 return X=Y
- If W>=In Z return X=Y/ Otherwise start at beginning.

Weibull

• $X=\beta(-\ln U)^{1/\alpha}$

Normal

- Generate U_1 and U_2 . $V_1 = 2U_1 1$, $W = V_1^2 + V_2^2$.
- If W>2 return to first step. Otherwise, Y=sqrt((-2lnW)/W), X₁=V₁Y, X₂=V₂Y.

Lognormal

- Y~N(μ,σ²)
- X=e^v

Beta

- $Y_1 \sim gamma(\alpha_1, 1), Y_2 = gamma(\alpha_2, 1)$
- $X=Y_{1}/(Y_{1}+Y_{2})$

Empirical

- How you do this depends on the type of empirical distribution.
- The book presents methods that don't require doing a search through an array.

Minute Essay

Questions?