More Statistics

2/4/2009

Opening Discussion

- What did we talk about last class?
- The ideas from last class will be coming up in the future.
- How can people teach whole classes on this? I was having a hard time dragging it out for 50 minutes.
- Stochastic processes.
- How does ρ_{ij} work?

Correlation and CovarianceStationary

- Correlation:

$$
\quad \rho_{i j}=\frac{C_{i j}}{\sqrt{\sigma_{i}^{2} \sigma_{j}^{2}}}
$$

- This allows some correlation, only the mean and the variance can't change over time.

$$
-\quad \rho_{j}=\frac{C_{i, i+j}}{\sqrt{\sigma_{i}^{2} \sigma_{i+j}^{2}}}=\frac{C_{j}}{\sigma^{2}}=\frac{C_{j}}{C_{0}}
$$

Estimation of Means and Variance

- Given a random variable in an experiment, taking the mean or the variance of the sequence only gives an estimate of the true mean or variance.

$$
\begin{gathered}
\bar{X}(n)=\hat{\mu}=\frac{\sum_{i=1}^{n} X_{i}}{n} \\
S^{2}(n)=\hat{\sigma}=\frac{\sum_{i=1}^{n}\left[X_{i}-\bar{X}(n)\right]^{2}}{n-1}
\end{gathered}
$$

- The variance in the mean, which tells us the spread in its distribution, goes as σ^{2} / n.

Problems

- If the values are correlated, this is still a good estimate of the mean, but the variance is off.

$$
\begin{aligned}
& E\left[S^{2}(n)\right]=\sigma^{2}\left[1-2 \frac{\sum_{j=1}^{n-1}(1-j / n) \rho_{j}}{n-1}\right] \\
& \operatorname{Var}[\bar{X}(n)]=\sigma^{2} \frac{\left[1+2 \sum_{j=1}^{n-1}(1-j / n) \rho_{j}\right]}{n}
\end{aligned}
$$

Central Limit Theorem

- For X pulled from any distribution, the distribution of the following will approach the standard normal random distribution.

$$
[\bar{X}(n)-\mu] / \sqrt{\sigma^{2} / n} \approx[\bar{X}(n)-\mu] / \sqrt{S^{2}(n) / n}
$$

Confidence Intervals

- We can specify an interval about the experimental mean into which the true mean should fall with a specified confidence level.

$$
\bar{X}(n) \pm t_{n-1,1-\alpha / 2} \sqrt{\frac{S^{2}(n)}{n}}
$$

- The odds of falling into this interval are 1- α.
- Note how the range varies with n .

Hypothesis Test for Means

- Null hypothesis is that $\mu=\mu_{0}$.
- $t_{n}=\left[\bar{X}(n)-\mu_{0}\right] / \sqrt{S^{2}(n) / n}$
- If $\mathrm{t}_{\mathrm{n}}>t_{n-1,1-\alpha / 2}$ reject hypothesis.

Strong Law of Numbers

- The mean of an experiment will approach the true mean with probability 1 as n goes to infinity.
- (Enough data points will give you an answer arbitrarily close to the real answer.)

Danger of Replacing a Distribution with Mean

- Don't do this. It leads to results that can be very misleading.
- Two distributions with similar means can lead to interesting dynamics while just them means doesn't.

Minute Essay

- Thoughts?

