Random Number Generators

Opening Discussion

Midterm results.

Random Number Generators

- For obvious reasons we need good random numbers for our simulations.
- Text has some interesting history on getting random numbers, much of it prior to the use of computers.
- Use of the term random number isn't quite right. Author doesn't like pseudo-random.
- Really care about the properties of the sequence.

Properties of Good Random

- There are several properties we want from a random number generator. We are always talking about something that generates U(0,1).
 - Uniformly distributed and apparently uncorrelated.
 - Fast and small storage.
 - Reproducible.
 - Have ability to pull from separate streams.
 - Portable.

Linear Congruential Generators

$$Z_{i} = (aZ_{i-1} + c)(mod m)$$

$$U_{i} = Z_{i}/m$$

$$0 < m, a < m, c < m, Z_{0} < m$$

 Will eventually repeat. Length is called period. Optimally it takes m steps, but won't in all cases.

Requirements

- A LCG will have full period if:
 - m and c are relatively prime (only common divisor is 1)
 - If q is a prime number that divides m, the q divides a-1.
 - If 4 divides m, then 4 divides a-1.
- Mixed generators set m=2^b, c is odd, and a is divisible for 4. Make b the size of numbers on the machine.

Other Generators

- General Congruence generators
 - $Z_i = g(Z_{i-1}, Z_{i-2}, ...) \pmod{m}$
- Composite Generators combine results from 2+ generators.
 - Shufflers use output of one as input to another.
 - Can use difference of two sequences.
- Feedback shift generators
 - Operate on the bits of a number.

Minute Essay

• ???