Random Number Generators

3/2/2009

Opening Discussion

- Midterm results.

Random Number Generators

- For obvious reasons we need good random numbers for our simulations.
- Text has some interesting history on getting random numbers, much of it prior to the use of computers.
- Use of the term random number isn't quite right. Author doesn't like pseudo-random.
- Really care about the properties of the sequence.

Properties of Good Random

- There are several properties we want from a random number generator. We are always talking about something that generates $U(0,1)$.
- Uniformly distributed and apparently uncorrelated.
- Fast and small storage.
- Reproducible.
- Have ability to pull from separate streams.
- Portable.

Linear Congruential Generators

$$
\begin{gathered}
Z_{i}=\left(a Z_{i-1}+c\right)(\bmod m) \\
U_{i}=Z_{i} / m \\
0<m, a<m, c<m, Z_{0}<m
\end{gathered}
$$

- Will eventually repeat. Length is called period. Optimally it takes m steps, but won't in all cases.

Requirements

- A LCG will have full period if:
- m and c are relatively prime (only common divisor is 1)
- If q is a prime number that divides m , the q divides a-1.
- If 4 divides m, then 4 divides a-1.
- Mixed generators set $m=2^{b}$, c is odd, and a is divisible for 4 . Make b the size of numbers on the machine.

Other Generators

- General Congruence generators
- $Z_{i=}=g\left(Z_{i-1}, Z_{i-2} \ldots\right)(\bmod m)$
- Composite Generators combine results from 2+ generators.
- Shufflers use output of one as input to another.
- Can use difference of two sequences.
- Feedback shift generators
- Operate on the bits of a number.

Minute Essay

- ???

