Discrete Random Variates

3-21-2011

Opening Discussion

- What did we talk about last class?
- Do you have any questions about things?

Generating Discrete Random Variates

- Now we want to work on how we pull values from discrete distributions.
- Most of the time we will use the inverse method.
- There are some other general methods that only work on discrete distributions.

Distributions

- Bernoulli
- If $\mathrm{U}<=\mathrm{p}$ return $\mathrm{X}=1$ else $\mathrm{X}=0$
- Discrete Uniform
- Return X=i+floor((j-i+1)U)
- Binomial
- Generate $\mathrm{Y}_{\mathrm{i}} \sim$ Bernoulli(p) for $\mathrm{i}=1 . . \mathrm{t}$
- Return $X=\operatorname{sum}\left(Y_{i}\right)$

More Distributions

- Geometric
- Return X=floor(In U/In(1-p))
- Negative Binomial
- Generate $Y_{i} \sim$ geom(p) for $\mathrm{i}=1$..s
- Return $X=$ sum $\left(Y_{i}\right)$
- Poisson
- $a=e^{-\lambda}, b=1, i=0$
- Loop over $\mathrm{i}, \mathrm{b}=\mathrm{bU}$, if $\mathrm{b}<$ a return $\mathrm{X}=\mathrm{i}$, else $\mathrm{i}++$

Arbitrary Discrete Distribution

- The text also goes into several methods that can be used to generate arbitrary discrete distributions.
- The simplest of these requires a search. The others use additional storage so that no search is needed and instead they look values up in arrays.

Continuing the Cloth Simulation

- I'd like for us to complete the code for the cloth simulation.

Minute Essay

- Questions?
- We are coming up on the first of the lectures where you get to pick topics. Do you have any suggestions for things that you would like to hear about?

