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Disclaimer

● I am writing a Scala textbook that is under 
contract with CRC Press.

● I would do this tutorial anyway, just because I 
like Scala that much.



  

Compiled Links

● http://www.cs.trinity.edu/~mlewis/ScalaLinks.html

● This is a collection of links for those who want 
more information on Scala.



  

Scala and Me

● Grad schools and type systems
● Functional Programming and ML
● Interest in X10 and Fortress
● Trinity curriculum update

● Was C → Java
● CS1 not object-early
● CS1 & CS2 use same language



  

Basics of Scala

● “Scalable Language”
● Multi-Paradigm

● Productivity of scripting languages
● Expressivity of functional languages
● Scalability of standard OO languages
● Speed of compiled, statically-typed languages

● All OO
● Highly Functional
● Static-typing with local type inference



  

Too Complex?

● Reasons for perception
● Scala is different
● Functional isn't broadly known
● Scalability → power

– Bloggers show “cool” examples

● Simpler in many ways
● Uniform syntax



  

Shorter Language Specification

Static Typed 
Language

Spec Length 
(pages)

Dynamic Typed 
Language

Spec Length 
(pages)

C 552 Common LISP 1153

C++ 1325 Ruby 341

C# 553 PHP 244

Java 684 JavaScript 252

VB.NET 597 Python 3.1 119

Scala 191 Scheme 50

F# 250



  

Fewer Keywords

http://carlosqt.blogspot.com/2011/01/how-many-keywords-in-your-source-code.html

http://carlosqt.blogspot.com/2011/01/how-many-keywords-in-your-source-code.html


  

Jobs



  

Benefits in CS 1

● Programming in the small
● REPL
● Scripting Environment

● Libraries allow for interesting code (JVM)
● Static type checking
● Uniform syntax

● Everything is a method call

● Powerful collections



  

Starting Off

● “Hello, World” and such
● REPL
● Types - “lack” of primitives

– tuples

● Statements/expressions
● Semicolon inference
● Simple input

● Variables
● val
● var

● Scripts



  

Conditions and Functions

● Functional → expressions
● if expression

● Boolean logic
● Blocks of code

● Functions
● def (would make method in class)
● Function literals

– n => n+1
– _+1



  

Recursion for Iteration

● This is my style, even in C.
● Works well with functional
● Cements previous topics
● Further with Scala

● Passing function argument → early abstraction

● Matching idiom
● Introduce patterns



  

Collections (Array/List)

● Just for Scala
● Doesn't make sense before loops in most languages.

● One mutable, one immutable
● Many standard methods
● Many higher-order methods
● Syntax

● Use () for indexing
● List also have ML style operations

● Creation, pass-by-name



  

Loops

● While loop
● Not an expression

● For loop
● Really for-each
● yield
● Ranges
● Many options

– Multiple generators

– If guards

– Variables

– Patterns



  

Files

● Can use Scanner
● scala.io.Source

● Scala Iterator[Char]
● getLines : Iterator[String]
● Use with higher-order methods

● Write with PrintWriter
● Introduce APIs?



  

Case Classes

● Immutable struct in simplest usage
● Simple syntax for grouping data
● Works as a pattern
● Copy method



  

GUIs

● scala.swing wraps javax.swing
● Cleaner beginner syntax

● No explicit inheritance
● Reactions use partial functions

● Drawbacks
● Currently no JTree
● Tables complex
● Button syntax uses companion object



  

Graphics

● Full Java2D
● Really using Java

● Override paint method
● Use BufferedImage
● Events for animations

● Keyboard
● Mouse
● Timer



  

Sorting & Searching

● Monomorphic at this point
● Can write your own visualization
● There are methods in collections



  

Other Stuff

● XML
● Organizes data better than flat files

● Serious recursion
● Problems with high branching factor

● Object-Orientation
● Normal classes
● Including methods



  

Benefits in CS 2

● Pure OO
● Fewer quirks than Java

● Traits
● Rich collections

● Libraries again
● Can make things interesting/relevant

● Eclipse
● Scalable language

● Libraries as language



  

OO for Larger Programs

● Review and extend from CS1
● Visibility/Private
● Special methods

● Symbolic
● Property assignment
● apply
● update

● Object declarations



  

Eclipse

● Full apps need an IDE
● Automatic error checks
● Name completion
● Needs memory



  

Polymorphism

● Inheritance/Subtyping
● Traits
● Protected visibility

● Parametric Polymorphism
● Type bounds
● Parametric methods → polymorphic sorts



  

Other Collections

● Sets
● Include expected methods

● Maps
● (key,value)
● key → value

● Buffers
● Mutable
● Variable sized

● Many options mutable and immutable



  

Multithreading

● Many approaches
● java.lang.Thread
● java.util.concurrent
● Parallel collections

– Added in 2.9
● Actors

● Simplified by functional



  

Networking

● Use java.net and java.io
● Streams
● Sockets
● Serialization



  

ADTs

● I cover these
● Stack/Queue
● Linked List
● Priority Queue

– Sorted LL

– Heap

● Trees
– BST

– Spatial

● Manifests
● Inheriting traits!!!



  

Grammars

● RegEx
● .r method on String
● Triple quote strings
● Patterns

● Combinatorial Parsers
● CF grammar → parser
● Arithmetic example



  

Beyond CS 1&2

● Akka
● Non-JVM implementations
● GPGPU libraries



  

Conclusions

● Good early on
● REPL
● Scripting

● Grows well
● OO & static types
● IDE support
● Complete libraries

● Complexity not required
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