

First Programming Language in CS
Education – The Arguments for
Scala

WORLDCOMP 2011

By

Dr. Mark C. Lewis
Trinity University

Disclaimer

● I am writing a Scala textbook that is under
contract with CRC Press.

● I would do this tutorial anyway, just because I
like Scala that much.

Compiled Links

● http://www.cs.trinity.edu/~mlewis/ScalaLinks.html

● This is a collection of links for those who want
more information on Scala.

Scala and Me

● Grad schools and type systems
● Functional Programming and ML
● Interest in X10 and Fortress
● Trinity curriculum update

● Was C → Java
● CS1 not object-early
● CS1 & CS2 use same language

Basics of Scala

● “Scalable Language”
● Multi-Paradigm

● Productivity of scripting languages
● Expressivity of functional languages
● Scalability of standard OO languages
● Speed of compiled, statically-typed languages

● All OO
● Highly Functional
● Static-typing with local type inference

Too Complex?

● Reasons for perception
● Scala is different
● Functional isn't broadly known
● Scalability → power

– Bloggers show “cool” examples

● Simpler in many ways
● Uniform syntax

Shorter Language Specification

Static Typed
Language

Spec Length
(pages)

Dynamic Typed
Language

Spec Length
(pages)

C 552 Common LISP 1153

C++ 1325 Ruby 341

C# 553 PHP 244

Java 684 JavaScript 252

VB.NET 597 Python 3.1 119

Scala 191 Scheme 50

F# 250

Fewer Keywords

http://carlosqt.blogspot.com/2011/01/how-many-keywords-in-your-source-code.html

http://carlosqt.blogspot.com/2011/01/how-many-keywords-in-your-source-code.html

Jobs

Benefits in CS 1

● Programming in the small
● REPL
● Scripting Environment

● Libraries allow for interesting code (JVM)
● Static type checking
● Uniform syntax

● Everything is a method call

● Powerful collections

Starting Off

● “Hello, World” and such
● REPL
● Types - “lack” of primitives

– tuples

● Statements/expressions
● Semicolon inference
● Simple input

● Variables
● val
● var

● Scripts

Conditions and Functions

● Functional → expressions
● if expression

● Boolean logic
● Blocks of code

● Functions
● def (would make method in class)
● Function literals

– n => n+1
– _+1

Recursion for Iteration

● This is my style, even in C.
● Works well with functional
● Cements previous topics
● Further with Scala

● Passing function argument → early abstraction

● Matching idiom
● Introduce patterns

Collections (Array/List)

● Just for Scala
● Doesn't make sense before loops in most languages.

● One mutable, one immutable
● Many standard methods
● Many higher-order methods
● Syntax

● Use () for indexing
● List also have ML style operations

● Creation, pass-by-name

Loops

● While loop
● Not an expression

● For loop
● Really for-each
● yield
● Ranges
● Many options

– Multiple generators

– If guards

– Variables

– Patterns

Files

● Can use Scanner
● scala.io.Source

● Scala Iterator[Char]
● getLines : Iterator[String]
● Use with higher-order methods

● Write with PrintWriter
● Introduce APIs?

Case Classes

● Immutable struct in simplest usage
● Simple syntax for grouping data
● Works as a pattern
● Copy method

GUIs

● scala.swing wraps javax.swing
● Cleaner beginner syntax

● No explicit inheritance
● Reactions use partial functions

● Drawbacks
● Currently no JTree
● Tables complex
● Button syntax uses companion object

Graphics

● Full Java2D
● Really using Java

● Override paint method
● Use BufferedImage
● Events for animations

● Keyboard
● Mouse
● Timer

Sorting & Searching

● Monomorphic at this point
● Can write your own visualization
● There are methods in collections

Other Stuff

● XML
● Organizes data better than flat files

● Serious recursion
● Problems with high branching factor

● Object-Orientation
● Normal classes
● Including methods

Benefits in CS 2

● Pure OO
● Fewer quirks than Java

● Traits
● Rich collections

● Libraries again
● Can make things interesting/relevant

● Eclipse
● Scalable language

● Libraries as language

OO for Larger Programs

● Review and extend from CS1
● Visibility/Private
● Special methods

● Symbolic
● Property assignment
● apply
● update

● Object declarations

Eclipse

● Full apps need an IDE
● Automatic error checks
● Name completion
● Needs memory

Polymorphism

● Inheritance/Subtyping
● Traits
● Protected visibility

● Parametric Polymorphism
● Type bounds
● Parametric methods → polymorphic sorts

Other Collections

● Sets
● Include expected methods

● Maps
● (key,value)
● key → value

● Buffers
● Mutable
● Variable sized

● Many options mutable and immutable

Multithreading

● Many approaches
● java.lang.Thread
● java.util.concurrent
● Parallel collections

– Added in 2.9
● Actors

● Simplified by functional

Networking

● Use java.net and java.io
● Streams
● Sockets
● Serialization

ADTs

● I cover these
● Stack/Queue
● Linked List
● Priority Queue

– Sorted LL

– Heap

● Trees
– BST

– Spatial

● Manifests
● Inheriting traits!!!

Grammars

● RegEx
● .r method on String
● Triple quote strings
● Patterns

● Combinatorial Parsers
● CF grammar → parser
● Arithmetic example

Beyond CS 1&2

● Akka
● Non-JVM implementations
● GPGPU libraries

Conclusions

● Good early on
● REPL
● Scripting

● Grows well
● OO & static types
● IDE support
● Complete libraries

● Complexity not required

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

