

Scala, Your Next Programming
Language
(or if it is good enough for Twitter, it is good enough for me)

WORLDCOMP 2011

By

Dr. Mark C. Lewis
Trinity University

Disclaimer

● I am writing a Scala textbook that is under
contract with CRC Press.

● I would do this tutorial anyway, just because I
like Scala that much.

Compiled Links

● http://www.cs.trinity.edu/~mlewis/ScalaLinks.html

● This is a collection of links for those who want
more information on Scala.

How I got into Scala

● Grad schools and type systems
● Functional Programming and ML
● Interest in X10 and Fortress

Basics of Scala

● “Scalable Language”
● Multi-Paradigm

● Productivity of scripting languages
● Expressivity of functional languages
● Scalability of standard OO languages
● Speed of compiled, statically-typed languages

● All OO
● Highly Functional
● Static-typing with local type inference

Too Complex?

● Reasons for perception
● Scala is different
● Functional isn't broadly known
● Scalability → power

– Bloggers show “cool” examples

● Simpler in many ways
● Uniform syntax

Shorter Language Specification

Static Typed
Language

Spec Length
(pages)

Dynamic Typed
Language

Spec Length
(pages)

C 552 Common LISP 1153

C++ 1325 Ruby 341

C# 553 PHP 244

Java 684 JavaScript 252

VB.NET 597 Python 3.1 119

Scala 191 Scheme 50

F# 250

Fewer Keywords

http://carlosqt.blogspot.com/2011/01/how-many-keywords-in-your-source-code.html

http://carlosqt.blogspot.com/2011/01/how-many-keywords-in-your-source-code.html

Past Complaints

● Documentation
● API
● Books
● Web resources

● Tools
● Improved IDE support

● Support
● Typesafe

Current Challenges

● Compile Time
● Smart, multipass compiler
● Optimization in progress

● Binary Compatibility
● Changes in traits require recompilation

● Uniform Style
● Many paradigms
● Need guidelines
● Tools coming

Jobs

Language Intro

● General rules
● All values are objects
● Operators are methods
● All expressions are valid statements
● Almost everything is an expression

● Declarations
● Begin with keyword

– val, var, def, type, class, object, trait

● Value parameters use ()
● Type parameters use []

Syntactic Sugar

● Semicolon inference
● Newlines become semicolons when it fits
● Explicit works too

● Operator notation
● Leave off dot and parens
● Methods with arity 0 or 1

Usage Methods

● REPL for simple tests
● Scripting for short programs

● Good for gluing things together

● Applications
● Declare object with main
● Model is much like Java

Difference for Classes

● Take arguments
● No body required
● Code in body run at construction

● Special methods
● Symbols
● Property assignment
● apply
● update

● Case classes

Object Declarations

● Creates singleton objects
● No static in Scala
● Companion objects

● Apply method commonly used for object
construction

● No arguments
● Can inherit

Traits

● Not interfaces
● Allow method implementations and data
● No arguments
● Can inherit from many
● Call order is linearized
● Key benefits

● Rich interfaces
● Extension of supertypes

Type Hierarchy

Collections

● Rich collection libraries
● Array, List, Set, Map, etc.
● Multiple varieties

– Mutable/immutable

● Creation
● Companion object methods

– fill, tabulate

● Higher-Order Methods
● map, filter, foreach, …

● Views

● Streams

Standard

Immutable

Mutable

Match/Patterns

● Match is not just switch
● Cases can be patterns and bind variables.
● Examples of patterns

● Tuples
● Array, List, etc.
● RegEx
● XML
● much more

● No break

For Expressions

● Not your normal for
● Technically for-each
● More options

● Multiple generators
● Variable declarations
● If guards
● Patterns

● No break, continue, or goto

Implicit Conversions

● “Pimp my Interface”
● Strict rules

● Must be in scope
● Only one applied

● Allows extension of
● java.lang.String
● Arrays
● Any code you didn't write

Useful Scripting

● scala.sys.process added in 2.9
● Simple system calls
● Piping between programs
● Conditional calls
● Allows Java library calls
● Glue things together

Regular Expressions

● Triple quote string literals
● The r method on String
● Work as a pattern
● Combine with for loop

● Skip non-matches

XML

● Literals
● Pattern matching
● Loads DOM
● Xpath style searching

● \ for immediate contents
● \\ for deep search
● Use @ for properties

Combinatorial Parsers

● CF grammar → parser
● ^^ to specify return
● Quick to parse trees

Parallelism

● Full access to Java libs
● Functional makes it easier

● Parallel collections
● Added in 2.9
● Call par method
● Fast conversions, O(1)
● Uses work stealing
● Works with for loops

More Parallel

● Actors
● Communicate through messages
● Single threaded in an actor
● Scala Actors
● Akka

DSLs

● Libraries look like language features
● Pass-by-name semantics
● Use implicits for built-in types
● Can use combinatorial parsers

Web Frameworks

● Lift
● Written for Scala
● Different approach

● Play!
● Also for Java
● Scala version uses Scala idioms

Conclusions

● Get most of the best of all worlds
● Less boiler plate
● Static type safety and speed
● High expressivity

● Keep current JVM functionality
● Easier parallel
● High level libraries

● Look like language features
● Easy to use
● DSLs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

