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Disclaimer

● I am writing a Scala textbook that is under 
contract with CRC Press.

● I would do this tutorial anyway, just because I 
like Scala that much.



  

Compiled Links

● http://www.cs.trinity.edu/~mlewis/ScalaLinks.html

● This is a collection of links for those who want 
more information on Scala.



  

How I got into Scala

● Grad schools and type systems
● Functional Programming and ML
● Interest in X10 and Fortress



  

Basics of Scala

● “Scalable Language”
● Multi-Paradigm

● Productivity of scripting languages
● Expressivity of functional languages
● Scalability of standard OO languages
● Speed of compiled, statically-typed languages

● All OO
● Highly Functional
● Static-typing with local type inference



  

Too Complex?

● Reasons for perception
● Scala is different
● Functional isn't broadly known
● Scalability → power

– Bloggers show “cool” examples

● Simpler in many ways
● Uniform syntax



  

Shorter Language Specification

Static Typed 
Language

Spec Length 
(pages)

Dynamic Typed 
Language

Spec Length 
(pages)

C 552 Common LISP 1153

C++ 1325 Ruby 341

C# 553 PHP 244

Java 684 JavaScript 252

VB.NET 597 Python 3.1 119

Scala 191 Scheme 50

F# 250



  

Fewer Keywords

http://carlosqt.blogspot.com/2011/01/how-many-keywords-in-your-source-code.html

http://carlosqt.blogspot.com/2011/01/how-many-keywords-in-your-source-code.html


  

Past Complaints

● Documentation
● API
● Books
● Web resources

● Tools
● Improved IDE support

● Support
● Typesafe



  

Current Challenges

● Compile Time
● Smart, multipass compiler
● Optimization in progress

● Binary Compatibility
● Changes in traits require recompilation

● Uniform Style
● Many paradigms
● Need guidelines
● Tools coming



  

Jobs



  

Language Intro

● General rules
● All values are objects
● Operators are methods
● All expressions are valid statements
● Almost everything is an expression

● Declarations
● Begin with keyword

– val, var, def, type, class, object, trait

● Value parameters use ()
● Type parameters use []



  

Syntactic Sugar

● Semicolon inference
● Newlines become semicolons when it fits
● Explicit works too

● Operator notation
● Leave off dot and parens
● Methods with arity 0 or 1



  

Usage Methods

● REPL for simple tests
● Scripting for short programs

● Good for gluing things together

● Applications
● Declare object with main
● Model is much like Java



  

Difference for Classes

● Take arguments
● No body required
● Code in body run at construction

● Special methods
● Symbols
● Property assignment
● apply
● update

● Case classes



  

Object Declarations

● Creates singleton objects
● No static in Scala
● Companion objects

● Apply method commonly used for object 
construction

● No arguments
● Can inherit



  

Traits

● Not interfaces
● Allow method implementations and data
● No arguments
● Can inherit from many
● Call order is linearized
● Key benefits

● Rich interfaces
● Extension of supertypes



  

Type Hierarchy



  

Collections

● Rich collection libraries
● Array, List, Set, Map, etc.
● Multiple varieties

– Mutable/immutable

● Creation
● Companion object methods

– fill, tabulate

● Higher-Order Methods
● map, filter, foreach, …

● Views

● Streams



  

Standard



  

Immutable



  

Mutable



  

Match/Patterns

● Match is not just switch
● Cases can be patterns and bind variables.
● Examples of patterns

● Tuples
● Array, List, etc.
● RegEx
● XML
● much more

● No break



  

For Expressions

● Not your normal for
● Technically for-each
● More options

● Multiple generators
● Variable declarations
● If guards
● Patterns

● No break, continue, or goto



  

Implicit Conversions

● “Pimp my Interface”
● Strict rules

● Must be in scope
● Only one applied

● Allows extension of
● java.lang.String
● Arrays
● Any code you didn't write



  

Useful Scripting

● scala.sys.process added in 2.9
● Simple system calls
● Piping between programs
● Conditional calls
● Allows Java library calls
● Glue things together



  

Regular Expressions

● Triple quote string literals
● The r method on String
● Work as a pattern
● Combine with for loop

● Skip non-matches



  

XML

● Literals
● Pattern matching
● Loads DOM
● Xpath style searching

● \ for immediate contents
● \\ for deep search
● Use @ for properties



  

Combinatorial Parsers

● CF grammar → parser
● ^^ to specify return
● Quick to parse trees



  

Parallelism

● Full access to Java libs
● Functional makes it easier

● Parallel collections
● Added in 2.9
● Call par method
● Fast conversions, O(1)
● Uses work stealing
● Works with for loops



  

More Parallel

● Actors
● Communicate through messages
● Single threaded in an actor
● Scala Actors
● Akka



  

DSLs

● Libraries look like language features
● Pass-by-name semantics
● Use implicits for built-in types
● Can use combinatorial parsers



  

Web Frameworks

● Lift
● Written for Scala
● Different approach

● Play!
● Also for Java
● Scala version uses Scala idioms



  

Conclusions

● Get most of the best of all worlds
● Less boiler plate
● Static type safety and speed
● High expressivity

● Keep current JVM functionality
● Easier parallel
● High level libraries

● Look like language features
● Easy to use
● DSLs
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