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Abstract

Ego-motion (self-motion) of the camera is a consid-

erable problem in outdoor rover applications. Stereo

tracking of a single moving target is a diÆcult problem

that becomes even more challenging when rough ter-

rain causes signi�cant and high-acceleration motion of

the camera in the world.

This paper discusses the use of inertial measure-

ments to estimate camera ego-motion and the use of

these estimates to augment stereo tracking. Some ini-

tial results from an outdoor rover will be presented,

illustrating the eÆcacy of the method. The method

causes fast but predictable image location transients,

but reduces the amplitude of image location transients

due to the rough terrain.

1 Introduction

The Robotic Systems Technology Branch of the Na-

tional Aeronautics and Space Administration (NASA)

is currently working on the development of an Extra-

Vehicular Activity Robotic Assistant (ERA) under

the sponsorship of the Surface Systems Thrust of the

NASA Cross Enterprise Technology Development Pro-

gram (CETDP). This will be a mobile robot that can

follow a �eld geologist during planetary surface explo-

ration, carry his tools and the samples that he collects,

and provide video coverage of his activity.

Prior experiments have shown that for such a robot

to be useful it must be able to follow the geologist

at walking speed over any terrain of interest. Geo-

logically interesting terrain tends to be rough rather

than smooth. The commercial mobile robot that was

recently purchased as an initial testbed for the ERA

project, an ATRV Jr., is capable of faster than walk-

ing speed outside but has no suspension. Its wheels

with inated rubber tires are attached to axles that

are connected directly to the robot body. Any an-

gular motion of the robot produced by driving over

rough terrain will directly a�ect the pointing of the

on-board stereo cameras. The resulting image motion

makes tracking of the geologist more diÆcult. This

either requires the tracker to search a larger part of

the image to �nd the target from frame to frame or to

search mechanically in pan and tilt whenever the im-

age motion is large enough to put the target outside

of the image in the next frame.

This paper explains the design and implementation

of a set of Kalman �lters that utilize the output of

the angular rate sensors and linear accelerometers on

the robot to estimate the motion of the robot base.

Section 2 reviews the hardware utilized in this project,

and Section 3 describes the Kalman �lters developed

to estimate this motion.

The motion of the stereo camera pair mounted on

the robot that results from this motion as the robot

drives over rough terrain is then straightforward to

compute. Section 4.1 describes the computation of

camera motion from base motion. This computation

is similar to that done for image stabilization on com-

mercial video cameras [6] [2] but we do not, in general,

wish to cancel camera motion but rather to combine it

with other information. Also unlike video cameras, we

do not currently utilize motion vectors derived from

images as in general the cameras are undergoing com-

manded motions to track a target.

Image motion estimates based on inertial data may

be used, for example, to command the robot's on-

board pan-tilt unit to compensate for the camera mo-

tion induced by the base movement. This has been ac-

complished in two ways: �rst, the standalone head sta-

bilizer described in Section 4.2 has been implemented

and second, the estimates have been used to inuence

the search algorithm of the stereo tracking algorithm

as described in Section 4.3. Studies of the image mo-

tion of a tracked object, shown in Section 5, indicate

that the image motion of objects is suppressed while

the robot is crossing rough terrain.

2 Rover Hardware

The rover is a modi�ed ATRV Jr., from RWI. The

wheels have been mounted on rigid extensions to pro-

vide adequate ground clearance, and a tower has been
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added to the top for the stereo vision hardware. Fig-

ure 1 shows a cartoon of the rover. The rover comes

Base

IMU
(Inside Base)

Cameras

Pan/Tilt/Verge Head

Figure 1: The EVA Robotic Assistant testbed

equipped with a magnetic compass, an Inertial Mea-

surement Unit (IMU), and two on-board computers. It

has been augmented to include a pan-tilt-verge (PTV)

head and two cameras with framegrabbers. The rele-

vant components are described briey below. Mathe-

matical models for these sensors are given later in the

paper.

2.1 Sensors Used

The sensors considered in this paper are three mutu-

ally orthogonal gyrometers, three mutually orthogonal

linear accelerometers, and a magnetic compass.

A gyrometer measures angular velocity about a sin-

gle axis. These measurements are assumed to be cor-

rupted by gyro biases [3]. These biases are commonly

estimated for purposes of compensation (see below for

mathematical sensor models used.) After compensa-

tion, the angular velocities recovered can be integrated

to arrive at an estimate of the rotation of a body rel-

ative to some �xed initial orientation.

A linear accelerometer measures acceleration along

a single axis. The accelerations can be integrated to

arrive at linear velocities, and integrated again to ar-

rive at position relative to some initial position. In this

work, the accelerometers were not used in this fashion,

but were used to measure the direction of the gravi-

tational vector while the rover was at rest. See [8] for

more discussion on inertial data.

The linear accelerometers and gyros used in this

project were packaged in a single Inertial Measure-

ment Unit (IMU), the DMU-6X from Crossbow. A

magnetic compass yields a bearing with respect to

magnetic north. The magnetic compass used in this

project was the TCM2 from Precision Navigation.

2.2 Actuators Used

The stereo pan-tilt-verge (PTV) heads utilized in

this paper are the Zebra Vergence from Pyxis Corp

(formerly Helpmate, formerly TRC) and the Biclops

from Metrica. Each of these heads accepts movement

commands via a serial port from an external computer.

Each head supports two cameras that are used for im-

age acquisition. Components based upon the Com-

mon Object Request Broker Architecture (CORBA)

[4] have been developed for image acquisition and con-

trol of the heads. Wasson, Kortenkamp and Huber [9]

describe the interaction of components to control gaze.

3 Kalman �ltering

This work utilizes six one-dimensional Kalman �l-

ters (or equivalently, one six-dimensional Kalman �lter

with a diagonal system covariance.) The six quantities

estimated are the three drifts associated with the three

gyros and the three roll-pitch-yaw angles �,  , and �.

Orientation given by roll-pitch-yaw angles is de�ned

by taking a base coordinate system (x0, y0, z0), ro-

tating about the x0 axis by the roll angle �, rotating

about the y0 axis by the pitch angle  , and �nally ro-

tating about the z0 axis by the yaw angle �. See [7]

for more discussion on the representation of rotation.

We distinguish between two distinct movement

modes of the robot: rest mode (RM) and maneuver-

ing mode (MM). If the rover is at rest we exploit some

useful measurements and assumptions. If the rover

is maneuvering, these assumptions are not made, and

the general form of the �lters are used. In this way,

we can maximally exploit the information provided by

the various sensors.

3.1 Determination of Mode

One important characteristic of the developed �l-

ters is the di�erence in behavior when the rover is at

rest and when the rover is maneuvering. Assumptions

about the inertial sensors, described below, change

based upon the mode. Therefore, a high-quality es-

timate of the mode of the rover is required.

We have designed a transient detector to distin-

guish between these modes of operation. This detector

utilizes hysteresis to handle outliers. Each gyrome-

ter data point is compared against a running average

of the previous 30 samples. If the angular velocity

is greater than 0.5 degrees/s from this average, that
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data point is de�ned to be a transient data point. If 5

consecutive data points are labelled as transient data

points, the mode is de�ned to be MM. Leaving MM

should be a more conservative transition, so 30 consec-

utive non-transient data points are required to leave

MM and enter RM. No mode changes are made un-

til these thresholds are reached. All of these thresh-

olds have been de�ned experimentally and are tunable.

This detector allows robust determination of the mo-

tion state of the rover.

3.2 Gyro Drift Estimates - RM

If the robot is at rest, the measured angular veloc-

ities consist completely of drift. In this case, simple

one-dimensional discrete Kalman Filters are used to

estimate drift about each axis. The assumed models

are

d�(k + 1) = d�(k) + w(k) (Motion Model)

_�g(k) = _�(k) + d�(k) + v(k) = d�(k) + v(k)

(Measurement Model)

where d�(k) is the drift for the gyro measuring angle �

at sample k, and the measured angular velocity _�g(k)

consists entirely of drift and noise. The noise sequences

w(k) and v(k) are assumed to be zero-mean Gaussian

white noise of covariance Q(k) and R(k), respectively.

This leads to a Kalman �lter implementation of

K�(k) = P�(k � 1)(P�(k � 1) +R(k))�1

(Kalman Gain)bd�(k) = bd�(k � 1) +K�(k)(�g(k)� bd�(k � 1))

(Estimate Update)

P�(k) = (I �K�(k))P�(k � 1) +Q(k)

(Uncertainty Update)

for computing the estimate bd�(k) of the drift on the

� axis. The computation of the Kalman gain matrix

K�(k) and the state estimate uncertainty P�(k) are

straightforward. See [1] for more explanation on the

derivation of Kalman �lters. The �lters for the � and

 drifts are analogous.

3.3 Attitude Estimate - RM

At rest, the attitude of the robot can be estimated

based on the projection of gravity (which is assumed to

be directed along the +z axis of the inertial frame)[8],

 (t) = �sin�1gx=g

�(t) = sin�1gy=g cos( (t))

These measurements of attitude are combined with

previous estimates of attitude in one-dimensional

Kalman �lters to achieve smoothing and outlier re-

jection.

3.4 Gyro Drift Estimates - MM

If the ERA is maneuvering, the simplifying assump-

tions made in the previous sections are invalid. There-

fore, we use di�erent motion models for this mode. We

simply maintain a constant drift estimate and increase

the uncertainty of the estimate with time. In essence,

we are neglecting the observation by setting the mea-

surement covariance R(k) = 1, yielding a Kalman

gain of zero.

bd�(k) = bd�(k � 1) (No Estimate Update)

P�(k) = P�(k � 1) +Q(k) (Uncertainty Update)

3.5 Angular Velocity Estimates - MM

To estimate the actual angular velocities in this case,

we subtract the gyro drift estimates from the gyrome-

ter reading:

b_�(k) = _�g(k)� d�(k)b_ (k) = _ g(k)� d (k)b_�(k) = _�g(k)� d�(k)

3.6 Attitude Estimation - MM

As the vehicle acceleration is superimposed on the

gravitational acceleration, the attitude estimates dur-

ing maneuvering are instead derived from integration

of the angular velocities, corrected by the drift esti-

mates as described above.

�g(t) = �g(t��t) +

Z t

t��t

h
_�g(t)� bd�(t)i dt

 g(t) =  g(t��t) +

Z t

t��t

h
_ g(t)� bd (t)i dt

�g(t) = �g(t��t) +

Z t

t��t

h
_�g(t)� bd�(t)i dt

where � is the sampling period. This integration can

be done via any numerically sound (e.g. rectangular,

trapezoidal, Runge-Kutta) algorithm. Trapezoidal in-

tegration is used in our implementation. These es-

timates are also folded into one-dimensional Kalman

�lters to achieve smoothing and outlier rejection.

4 Use of Base Motion Estimates

Estimates of angular velocity and angular position

(net rotation since initialization) can be used to correct
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for ego-motion in images. Ego-motion is de�ned to be

image motion due to the movement of the camera in

the world. This is distinct from object motion, which is

image motion caused by the movement of the tracked

object in the world. Object motion is not addressed

in this paper.

The following sections describe how we translate

base rotation to camera motion, and two methods for

utilizing these estimates. In Section 4.2, we describe

a standalone stabilization behavior that can be com-

bined with manual control to provide a stabilized im-

age. In Section 4.3, we describe the use of these esti-

mates in a stereo tracking application.

4.1 Transforms Used

Given the base orientation and current PTV con�g-

uration (pan, tilt, and verge angles), a homogeneous

transform (see, e.g. [7]) can be created that relates

an object of interest in the world coordinate system to

that object in a camera coordinate system:

Pcc = Hbase
cc Hworld

base Pworld

Hbase
cc = Rot(x; tilt)�

Rot(z; pan� verge=2)�Hmount
base

Hworld
base = Rot(z; �)�Rot(y; �)�Rot(x; �)

where Hb
a is the homogeneous transform from coordi-

nate system a to coordinate system b, Pa are the coor-

dinates of a point in coordinate system a, and Rot(a; �)

indicates a rotation of � about the a axis.

Given this transform and the world position of an

object, the position of the object in the current camera

coordinate frame can be determined. This position can

be then used to command the cameras to center the

object in the �eld of view, as described in the following

section. The transform can also be passed to object

tracking software to initiate the object search in the

new image, as described in Section 4.3.

4.2 Standalone Stabilization

In a \standalone" con�guration, there is a single

point in the world coordinate system that we wish to

stabilize. We de�ne stabilization as the act of maintain-

ing the image of a particular object in a �xed location

in the camera image. Note that as the actuators used

(the Zebra Vergence and Biclops PTV heads) have no

degree of freedom to compensate for roll, only a single

point can be stabilized. The remainder of the target

object will rotate in the image with base roll. The

location of this point is assumed to change slowly rel-

ative to frame rate, making this con�guration useful,

for example, for manual control of the view.

Once the transforms described in Section 4.1 are

computed, a command is sent to the PTV head to send

the object of interest to a �xed point in the camera

coordinate system (for example, directly centered in

front of the camera). Both PTV heads utilized in this

experiment (see Section 2.2) contain sophisticated con-

trol algorithms in either the hardware or the CORBA

drivers, ensuring smooth trajectories without further

attention to control strategy.

4.3 Interaction with Stereo Tracking

Stereo tracking software has been developed at

Johnson Space Center (JSC) that will track the torso

and arm of a suited astronaut [5]. One objective of

our work is to utilize the ego-motion estimates in this

tracking software. This section describes this process.

In each new frame, the tracking software begins

searching an image for several textural features which

make up the target. The initial image location of this

search has been the previous image location of the tar-

get. In situations where signi�cant ego-motion is en-

countered, the performance of the stereo tracking algo-

rithm can be e�ected. The amount of the image that is

searched for the target may need to be increased, thus

slowing the algorithm and increasing the likelihood of

false alarms. If the target is lost due to the target

leaving the search area or �eld of view, the rover may

need to stop while the target is reacquired.

If ego-motion estimates are available, as described

above, the initial image location for search can instead

be set to be the expected image location of the target.

This location is de�ned as the new image location of

the previous world location of the target. This should

allow the reduction of the search area and a subse-

quent increase in the frame rate of the object tracking

software.

In some cases, the target may actually leave the �eld

of view of the camera. Purely visual tracking is at a

signi�cant disadvantage here. If the apparent motion

of the target has been consistent for several frames,

the visual motion may be suÆcient to reacquire the

target after re-servoing the head. However, it is much

more likely that in this situation either the target, the

rover, or both have changed acceleration and velocity.

An algorithm utilizing purely visual information will

fail in this situation. If the target leaves the �eld of

view, the stereo tracker can utilize the expected image

location of the object (which will be outside the view-

able portion of the image plane) to direct the PTV

head to servo in the appropriate direction and hope-

fully reacquire the target.

In the event that the target is completely lost, iner-

tial data is also useful. In this case, a volume of space
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parallel to the ground plane is systematically searched

for the target (the torso and head of a suited astro-

naut). If inertial data is not used, this search may not

occur parallel to the ground plane, and will not be as

likely to succeed.

In each of these ways, inertial data is used to aug-

ment existing JSC stereo tracking software. With

these augmentations, the e�ect of rough terrain on

stereo tracking performance is reduced.

5 Results

Figures 2 and 3 illustrate the performance of the �l-

ters for the gyro drifts and orientation angles. Figure 4

illustrates the behavior of the standalone stabilization.
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Figure 2: Initialization of drift estimate (roll only)

Figure 2 shows the initialization of the drift estimate

d� while the base is at rest. The high initial uncer-

tainty of the drift estimate causes the measurements

�obs to signi�cantly a�ect the estimate. After the drift

estimates become more certain, new measurements be-

gin to a�ect the drift estimates less. The velocity �vel
quickly approaches zero.

Figure 3 illustrates both sets of Kalman �lters: the

orientation angles and drift estimates. After many

samples, the estimate for the drift is fairly certain.

Upon entering an angular transient, there is a detec-

tion lag of several samples. Therefore, during this time

(near sample 635) the drift estimate does not change

appreciably. As described in Section 3, once a tran-

sient is detected, updates to the drift estimates are

suspended for the duration of the transient. In this
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Figure 3: Drift estimation during transient (roll only)

test, the robot begins at rest, drives over an obstacle,

then is at rest again.

This �gure also shows the di�erence in uncertainty

between the at-rest observations of the attitude (de-

rived from the accelerometers) and the observations

derived by integrating the gyro measurements. The

derived measurements are more precise, but are sub-

ject to a slow drift over time, while the accelerometer-

derived measurements are bias-free, but have a high

degree of uncertainty. Both types of measurements

are used over time, yielding the behavior shown in Fig-

ure 3: a �lter that responds quickly and accurately to

measure transient behavior, but will reset the attitude

estimates any time the base is at rest.

Figure 4 shows the location in image coordinates (u

along the horizontal direction, v along the vertical) of

an object of interest. This object drifts slowly lower

in the image as the rover moves forward toward the

object (it is located slightly below the PTV head).

The approximate ground truth location of the object

without terrain is shown with dashed lines. The hand-

tracked image location of the object with �xed gaze

(constant pan, tilt, and verge angles on the PTV head)

is shown with dotted lines. As can be seen from the

�gure, with �xed gaze there is a large vertical transient

near samples 50-100. This corresponds to the front tire

of the rover encountering an obstacle. The other tran-

sient (near samples 190-220) corresponds to the rear

tire encountering the same obstacle. With stabiliza-

tion turned on (the dot-dashed lines,) the algorithm

described in Section 4.2 is controlling the PTV head,

and the amplitude of both transients are smaller.

There is a tradeo� for the stabilization, however.

As can be seen from Figure 4, stabilization currently

min80
3082



0 50 100 150 200 250 300
60

80

100

120

140

160

180

u locations

v locations

sample

(p
ix

el
)

u with stabilization
v with stabilization
v with fixed gaze   
v with fixed gaze   
baseline u location 
baseline v location 

Figure 4: Stabilization during terrain traversal

induces a low-frequency vibration in image location.

The object of interest remains roughly in the center of

the center of the image, as intended, but the picture

appears to shake. We believe that this e�ect is due

to the point-to-point move commands currently used

to command the PTV heads. We are working to inte-

grate the ego-motion estimation with existing tracking

software that drives the PTV heads by updating de-

sired angular velocities of the PTV head, which may

eliminate or reduce this e�ect. Note that even with the

artifacts, the amplitude of the transients is decreased.

6 Future Work

The primary extension to this work will be to com-

plete the integration of the ego-motion estimates gen-

erated by this �lter with the existing JSC stereo track-

ing software and to evaluate the eÆcacy of this up-

grade. Evaluation of the behavior of the angular esti-

mates in the �eld may take place in September 2000,

during the scheduled tests in Arizona.

Less immediate extensions include the elimination of

the explicit notion ofmodes of operation to be replaced

by a continuous scale that can be used to smoothly

transition between exploiting rest-mode assumptions

and the general form of the �lter. Feedback on actual

camera motion could be generated by the stereo vision

software and incorporated into the attitude estimates.

Finally, positional estimates have not been ad-

dressed at this point. Positional information from

a GPS reciever, wheel encoders, and the linear ac-

celerometers could be combined to arrive at estimates

for the position, linear velocity, and linear accelera-

tion of the robot. This information could be usedto

generate the three-dimensional path of the rover.

7 Conclusions

Inertial data can be used to compensate for ego-

motion in images taken from an outdoor rover. This

compensation can be treated as a standalone behavior,

to keep a speci�ed object of interest centered in an im-

age, or as an input to a more complex object tracking

algorithm. Initial tests reveal that some low-frequency

oscillation was introduced as a result of the stabiliza-

tion, but that the amplitude of image location tran-

sients due to obstacles in the path of an outdoor rover

decreased. This should expand the range of speed and

surface roughness over which the rover should be able

to visually track and follow a �eld geologist.
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