

Finishing Linked Lists

10-7-2011

Opening Discussion

 Minute essays
 Throws and exceptions.
 Monday assignments.

Implementing a Singly Linked
List

 Let's finish our implementation of the singly linked
list.

Sentinels

 A sentinel is an extra node in the list that
represents the “end” of the list and doesn't
store data.

 The purpose of the sentinel is to remove
special cases. The next of the sentinel is what
we have called head.

 They are most useful in a doubly linked list
where the previous of the sentinel is tail.

Implementing a Doubly Linked
List

 Now let's implement Buffer with a doubly linked
list with a sentinel. The list will also be circular.

 You should notice that this implementation
never has to check for null because no
references in the list should ever be null. This
simplifies the code significantly. We also
implicitly get a head and a tail with no extra
work. If you don't have a sentinel you will write
a lot of extra checks for nulls.

Stack and Queue with LL

 Remember that the 'A' in ADT means abstract.
So you can build multiple implementations.

 Let's redo our implementation of the stack and
the queue using a linked list to store the data.

Minute Essay

 Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

