
Binary Trees

4-13-2004

Opening Discussion

 What did we talk about last class?
 Do you have any questions about the

assignment?
 You might have noticed that I moved

some lectures around a bit to get this one
for today. I realized that this was needed
to give you full time to work on
assignment #7.

What is a Tree?

 You are all familiar with what normal
trees look like. In CS we use the term
somewhat differently, and more formally.

 To describe trees we need some basic
terminology
 Node - an element of a tree. One node is

designated as the “root”
 Edge - a directed connection from one node to

another.

Tree Criteria
 Every node, C, has exactly one incoming

edge from another node, P. P is said to
be the parent of child node C. Root has 0.

 There is a unique path from the root to
any node. The number of edges on that
path is called the path length. It is also
called the depth of the node.

 A node with no children is called a leaf.
The path length from a node to the
deepest leaf in the height of that node.

More Terms

 Following the parent-child analogy, children of
the same node are called siblings. We also call
any node on a path below a given node a
descendant and any above an ancestor.

 You might also hear the size of a node referred
to as the number of descendants of a node,
including itself.

 We can also define a tree as either empty, or a
root with zero or more subtrees where the root
connects to the roots of those subtrees.

General Tree
Implementation

 In a general tree each node can have zero
or more children. That is a lot of flexibility.
 We want a class to represent nodes. To
get this flexibility we can use a linked list.
Each node has pointers to a first child and
the next sibling.

 It might be just as easy to have the child
member be a Vector that we put Nodes in.
File systems are a good example of this.

Traversals
 As with any data structure one of the

things you want to be able to do is to
traverse through all the elements.

 Think for a while about how you would do
this? There is even a question about the
order you traverse them in. Do you want
to process a node before you process its
children or after? If before we call it a
preorder traversal. Otherwise it is a
postorder traversal.

Traversals and Recursion

 The simplest way to do a traversal is through
recursion. If you want to do it with a loop you
have to implement a data structure to store
some nodes or have the tree specially set up.

 The traverse function takes a node and calls
itself once with each child node. It also does
whatever the visit operation is.

 Preorder does a visit before going to children and
postorder visits after going to children.

 Breadth first uses a queue, not recursion.

Binary Trees

 Sometimes we want to limit how many
children a node has. One of the most
commonly used trees in programming is
the binary tree where no node has more
than 2 children.

 The children are often called left and
right. Your book has a fair bit more
discussion of binary trees that we won’t
go into right now but you should look at.

In-order Traversal

 For a binary tree there is an extra type of
traversal called an in-order traversal
where the node is visited between the
recursion down left and right.

 Equations are great examples of trees.
We typically write them out in the in-
order. We could just as well write them
out in post-order or pre-order.

Sorted Binary Trees
 One of the best uses of binary trees is the

sorted binary tree. In this type of tree,
we store data in every node and below
any node we put lesser values to the left
and greater values to the right.

 We find elements by going down the tree
always going left or right. This gives us
behavior like a binary search, but the tree
is more flexible because adds and
removes are quite efficient as well.

Adding and Removing

 The code for both adding and removing
from a binary tree begins like a search
that keeps track of previous (much like a
linked list).
 The add always goes to a leaf and adds the

new element to the proper side.
 The remove replaces the node we are

removing with either the greatest node on the
left or the smallest node on the right.

Minute Essay
 Write the order the nodes would be

visited with the following tree in a
preorder traversal and then for a
postorder traversal.

 Design #6 is due today.

A

B C D

E F

J K L

G H I

M N

