Points-to Analysisin Almost Linear Time

Bjarne Steensgaard

Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA

rusa@ esear ch. m crosoft.com

Abstract

We present an interprocedural flow-insensitive points-to analysis
based on type inference methods with an almost linear time cost
complexity. To our knowledge, this is the asymptotically fastest
non-trivial interprocedural points-toanalysisal gorithmyet described.
The algorithm is based on a non-standard type system. The type
inferred for any variable represents a set of locations and includes
atype which in turn represents a set of locations possibly pointed
to by the variable. The type inferred for afunction variable repre-
sentsa set of functionsit may point to and includes atype signature
for these functions. The results are equivalent to those of a flow-
insensitive alias analysis (and control flow analysis) that assumes
diasrelations are reflexive and transitive.

Thiswork makes three contributions. Thefirst is atype system
for describing auniversally valid storage shape graph for aprogram
in linear space. The second is a constraint system which often
leads to better results than the “obvious’ constraint system for the
given type system. The third is an amost linear time a gorithm for
points-to analysis by solving a constraint system.

1 Introduction

M odernoptimizing compilersand programunderstanding and brows-
ing tools for pointer languages such as C [KR88] are dependent
on semantic information obtained by either an alias analysis or a
points-to analysis. Alias analyses compute pairs of expressions (or
access paths) that may be aliased (e.g., [LR92, LRZ93]). Points-
to analyses compute a store model using abstract locations (e.g.,
[CWZ90, EGH94, WL 95, Ruf95]).

Most current compilers and programming tools use only in-
traprocedural analyses, as the polynomial time and space complex-
ity of the common data-flow based analyses prevents the use of
interprocedural analysesfor large programs. Interprocedural analy-
sisis becoming increasingly important, asit is necessary to support
whole-program optimization and various program understanding
tools. Previously published interprocedural analysis algorithms
have not been reported to have been successfully applied to pro-
grams around 100,000 lines of C code (the published results are
practically al for less than 10,000 lines of C code).

Copyright (© 1995 by the Association for Computing Machinery, Inc. Permission to
make digital or hard copies of part or al of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that new copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers or to redistribute requires prior
specific permission and/or afee. Request permissions from Publications Dept, ACM
Inc, Fax +1 (212) 869-0481, or <per mi ssi ons@cm or g>.

We present a flow-insensitive interprocedural points-to analysis
algorithm that has a desirable linear space and almost linear time
complexity and isalso very fast in practice. The agorithmis easily
applicableto programswith many hundreds of thousands of lines of
code. Theanalysisresultsare often not as accurate asthose obtained
by flow-sensitive analyses. However, the results are roughly com-
parable to those of, e.g., the cubic time complexity flow insensitive
analysis of [Wei80].

The agorithm, which is inspired by Henglein's binding time
analysisby typeinference[Hen91], usesanon-standard type system
to describe the store usage at runtime by using types to construct
a storage shape graph [CWZ90]. While we describe the principles
behind the algorithm in terms of types and typing rules, we also
provide a detailed description of the algorithm which can be used
amost directly to implement the algorithm in a compiler.

In Section 2 we state the source language for which we describe
the algorithm. The language captures the essential parts of a lan-
guage like C. In Section 3 we define the non-standard set of types
we use to model the storage use, and in Section 4 we state a set of
typing rules for programs. The typing rules impose constraints on
the relationships of types of program variables. Finding atyping of
the program that obeys these constraints amounts to performing a
points-to analysis. In Section 5 we show how to efficiently infer the
minimal typing that obeys the constraints. In Section 6 we report
on practical experience with the algorithm in a C programming en-
vironment. In Section 7 we describe related work, and in Section 8
we present our conclusions and point out directionsfor future work.

2 The source language

We describe the points-to analysis for a small imperative pointer
language which captures the important properties of languages like
C [KR88]. The language includes pointers to locations, pointers
to functions, dynamic allocation, and computing addresses of vari-
ables. Since the analysisis flow insensitive, the control structures
of the language are irrelevant. The abstract syntax of the relevant
statements of the language is shown in Figure 1.

The syntax for computing the addresses of variables and for
pointer indirection is borrowed from the C programming language
[KR88]. All variables are assumed to have unique names. The
op(.. .) expression form is used to describe primitive computations
such as arithmetic operations and computing offsets into aggregate
objects. The allocate(y) expression dynamically allocates a block
of memory of sizey.

Functionsareconstant valuesdescribedby thefun(. ..)—(...)S'
expression form®. The f; variables are formal parameters (some-

1We have generalized function definitions to allow functions with multiple return
values;, afeature not foundin C.

S = x=y
| x=8&y
| x==xy
| X=0p(y1...Yn)
| x=allocate(y)
| *x=y
| x=fun(f...f.)—=(r...rm) S
| X1 -Xem = PY1---Ya)

Figure1l: Abstract syntax of therelevant statements, S, of the source
language. X, Y, f, r, and p range over the (unbounded) set of variable
names and constants. op ranges over the set of primitive operator
names. S* denotes a sequence of statements. The control structures
of the language are irrelevant for the purposes of this paper.

fact = fun(x)—(r)

if lessthan(x 1) then
r=1

else
xminusone = subtract(x 1)
nextfac = fact(xminusone)
r = multiply(x nextfac)

fi

result = fact(10)

Figure 2: A program in the source language that computes facto-
rial (10).

times called in parameters), and the r; variables are return pa
rameters (sometimes called out parameters). Function calls have
call-by-value semantics [ASU86]. Both formal and return parame-
ter variables may appear in left-hand-side position in statementsin
the function body. Formal and return parameter variables as well
as local variables may not occur in the body of another function;
thisisalwaystruefor C programs, which are not allowed to contain
nested function definitions.

Figure 2 shows an implementation of the factorial function (and
acall of same) in the abstract syntax of the source language.

Weassumethat programsareaswell-behaved as(mostly) portable
C programs. The analysistracks flow of pointer values, so the anal-
ysis algorithm may produce wrong results for programs that con-
struct pointersfrom scratch (e.g., by bitwise duplication of pointers)
and for non-portable programs (e.g., programs that rely on how a
specific compiler alocates variables relative to each other). How-
ever, the analysis agorithm as presented below will deal with, e.g.,
exclusive-or operations on pointer values, wherethereisareal flow
of values.

3 Types

For the purposes of performing the points-to analysis, we define
a non-standard set of types describing the store. The types have
nothing to do with the types normally used in typed imperative
languages (e.g., i nt eger ,fl oat, poi nt er,struct).

We use types to model how storage is used in a program at
runtime (a storage model). Locations of variables and locations
created by dynamic allocation are all described by types. Each type
describes a set of locations as well as the possible runtime contents
of those locations.

A type can be viewed as a node in a storage shape graph
[CWZ90]. Each node may have edges to other nodes, which is

modelled in the type system by letting types have type components.
The storage shape graph may be cyclic for some programs, so the
types may also be recursive.

Theset of typesinferred for thevariablesof aprogramrepresents
a storage shape graph which is valid at all program points. The
storage shapegraph conservatively modelsall the points-to relations
that may hold at runtime. Aliasrelations can also be extracted from
the storage shape graph [EGH94].

Our goal is a points-to analysis with an ailmost linear time cost
complexity. The size of the storage shape graph represented by
types must therefore be linear in the size of the input program.
Consequently, the maximum number of graph nodes must be linear
inthesize of theinput program. Additionally, each graph node may
not have more than afixed number of out-going edges, meaning that
each type may only have afixed number of component types.

We describe the locations pointed to by a pointer variable by a
single type. For composite objects (such asst r uct objectsin C),
we also describe all the elements of the object by asingle type.

Describing each element in acomposite object by separate types
would, for most imperative languages, imply that the size of the
storage shape graph could potentially be exponential in the size of
theinput program(e.g., by extremeuseoft ypedef andst r uct in
C). Describing the elements of composite objects by separate types
may still be desirable, as the sum of sizes of variablesisunlikely to
be exponential in the size of the input program. Extending the type
system to do so is not addressed in the present paper.

The source language alows pointers to functions. Function
pointer values are described by signature types describing the types
of the argument and result values.

Values may be (or include) pointersto locations and pointersto
functions. The type of a value must therefore accommodate both
typesof pointers. Inour type system, avaluetypeisthereforeapair
including a location type and a function signature type.

The non-standard set of types used by our points-to analysiscan
be described by the following productions:

a = TXA
T = L|ref(a)
A = Llam(ai...an)(@nt1- - - Qngm)

The « types describe values, the = types describe locations (or
pointerstolocations), and the A types describefunctions (or pointers
to functions).

Types may be recursive, and it may therefore be impossible to
write out the types directly. The types can be written out by using
type variables. Two types are not equal unless they either both are
1 or are described by the same type variable. Note that this is
different from the usual structural equality criterion on types. We
could use the structural equality criterion if we added atag to the =
and X types.

4 Typing rules

In this section we define a set of typing rules based on the set of
non-standard types defined in the previous section. Thetyping rules
specify when aprogram iswell-typed. A well-typed programisone
for which the static storage shape graph indicated by the typesis
a safe (conservative) description of al possible dynamic (runtime)
storage configurations. Before stating the typing rules, we argue
for using inequalities rather than equalities in the typing rules and
argue for the way we have defined the typing rule for statements
with primitive operations.

Each location in the program is described by a single type. A
pointer to alocation is described by the type of the location pointed
to. If several locations may contain a pointer to the same location,

then the types of these locations must all have the same location
type component. This requirement must be reflected in the typing
rules.

Consider a simple assignment statement, x = y. Assume that x
has type 7., (meaning that the location alocated to hold the value
of X has type 7.,) and that y has type 7,. If a location pointer
value may be assigned to x when executing the statement, then the
location component of both 7, and , must be 7,,, where 7, is the
type describing the pointer value being assigned to x. If afunction
pointer value may be assigned, then 7., and 7, must have the same
function signature component.

The “obvious’ typing rule for simple assignment statements
would be;

AEX:ref(a)
Ay ref(a)
A Fwelltyped(x = y)

Thisrule statesthat this part of the program iswell-typed under type
environment A if the contents of variablesx and y are described by
thesametype(s). Previouswork has used thistyping rulefor simple
assignment [Ste95a).

The above typing rule is, however, too strict. Thisisillustrated
by the following sequence of statements:

a=4
X=a
y=a

Using the above rule, the content components of the types for a,
X, and y must al be the same. That is not strictly necessary, as
no pointer value is ever assigned. If x and y are used in other
parts of the program to hold pointersto disjoint locations, the above
statements would unnecessarily force all the pointed-to locationsto
be described by the same type. Furthermore, if x isused in another
part of the program to hold a pointer value, the analysis results will
indicate that both y and a may hold the same pointer value, even if
they are only assigned integer values in the program.

Given an assignment statement x =y, the content component
typesfor x and y need only be the same if y may contain a pointer.
In order to state this requirement in a typing rule, we introduce a
partial order on types defined asfollows:

tlﬂtzﬁ(tlzl)V(tlztz)

(tl X tz) < (t3 X t4) =4 (tl < t3) N (tz < t4).

Given that non-pointers are represented by type L, the requirement
can now by expressed by the following typing rule:

A X ref(al)
ALy :ref(az)
a;d o
A Fwelltyped(x = y)

The rule states that each component type of «, must be either L or
equal to the corresponding component type of a;.

In statements of the form x = op(y1 ... Y»), the op operation
may be a comparison, a bit-wise operation, an addition, etc. Con-
sider a subtraction of two pointer values. The result is not a pointer
value, but either of the two operand pointer values can be recon-
stituted from the result (given the other pointer value). The result
must theref ore be described by the sametype asthetwo input pointer
values.

Thereare operationsfrom which argument pointer val ues cannot
be reconstituted from the result (e.g., comparisons. <, #, €tc.). For
such operations, the result is not required to be described by the

same type as any input pointer values. For the purposes of this
paper, we will treat al primitive operationsidentically.

In Figure 3 we state the typing rules for the relevant parts of the
source language. A program is well-typed under typing environ-
ment A if all the statements of the program are well-typed under A.
The typing environment A associates al variables with atype.

The typing rule for dynamic allocation implies that a location
typeis required to describe the value stored in the variabl e assigned
to. The type used to describe the alocated location need not be
the type of any variable in the program. The type of the allocated
locationisthen only indirectly availablethrough thetype of the vari-
able assigned to. All locations allocated in the same statement will
have the same type, but locations allocated by different allocation
statements may have different types.

Figure 4 contains an example program and a typing of al the
variablesoccurring in the program that obeysthetyping rulesof Fig-
ure3. Variablesx and z must bedescribed by thesametypevariable,
as asingle type variable must represent the locations pointed to by
all the pointers possible stored in the location for variabley.

5 Efficient type inference

Thetask of performing a points-to analysis has now been reduced to
thetask of inferring atyping environment under which aprogramis
well-typed. More precisely, the typing environment we seek is the
minimal solution to the well-typedness problem, i.e., each location
type variable in the typing environment describes as few locations
aspossible. In this section we state how to compute such aminimal
solution with an almost linear time complexity.

The basic principle of the algorithm is that we start with the
assumption that all variables are described by different types (type
variables) and then proceed to merge types as necessary to ensure
well-typednessof different parts of the program. Merging two types
means replacing the two type variables with a single type variable
throughout the typing environment. Joining is made fast by using
fast union/find data structures. We first describe the initialization
and our assumptions about how the program is represented. Then
we describe how to deal with equalities and inequalities in the
typing rules in a manner ensuring that we only have to process
each statement in the program exactly once. Finally we argue that
the algorithm has linear space complexity and almost linear time
complexity.

5.1 Algorithm stages

In the first stage of the algorithm, we provide atyping environment
whereall variables are described by different type variables. A type
variable consists of afast union/find structure (an equivalence class
representative (ECR)) with associated type information. The type
of each of the type variables in the typing environment is initially
ref(L x 1). We assume that the program is represented in some
program representation where name resol ution has occurred, so we
can encode the typing environment in the program representation
and get constant time access to the type variable associated with a
variable name.

In the next stage of the algorithm, we process each statement
exactly once. Typevariablesarejoined as necessary to ensure well-
typedness of each statement (as described below). When joining
two type variables, the associated type information is unified by
computing the least upper bound of the two types, joining compo-
nent type variables as necessary. Joining two typeswill never make
a statement that was well-typed no longer be well-typed. When
al program statements are well-typed, the program is well-typed.

AEX:ref(a)
Aty :ref(an)
a2 < ag

A Fwelltyped(x = y)

AbXx:ref(t x)
Aly: T
A Fwelltyped(x = &y)

A X ref(al)
ALy ref(ref(az) x _)
adag

A Fwelltyped(x = xy)

Abx:ref(a)
ARy ref(ay)
Vie[l...n]:a; da
A Fwelltyped(x = op(y1 ... Ya))

Abx:ref(ref(() x)
A Fwelltyped(x = allocate(y))

Abx:ref(ref(a) x)
Aty :ref(az)
a2 < ag

A Fwelltyped(xx = y)

Abx:ref(_xlam(ar...an)(0mti .- Qngm))
A l—fl : ref(a,-)
At ref(antj)
Vs € S : A Fwelltyped(s)
A Fwelltyped(x = fun(fy. .. f.)—=(r1. .. rm) S7)

Abx; iref(al, ;)
Abp:ref(Cxlam(az...an)(@nt1-. . Qngm))
Aby; ref(af)
Vie[l...n]:a) da;
Vie[l...m]:iany; Doy,

A Fwelltyped(Xi. . . Xm = P(Y1. .. Yn))

Figure 3: Typerulesfor the relevant statement types of the source language. All variables are assumed to have been associated with atype
in the type environment A. (Distinct variables are assumed to have distinct names, so the type environment can describe all variablesin al

scopes simultaneously.) “_" isawild-card value in the rules, imposing no restrictions on the type component it represents.
E z g:; a. m = (T4 X J_)
if p then b: 72 =ref(rs x L) Xz
y = &z C. mT3= (7'5 X J_)
el se ’ x: ma=ref(Lx1) [b] p
y = & y: ms=ref(rax 1)
fi Z: T y
: =ref(Lx L
c = & p: e (Lx1)

Figure 4: Example program, a typing of same that obeys the typing rules, and graphical representation of the corresponding storage shape
graph. Note that variablesx and z are described by the same type. Even though types 71 and 75 are structurally equivalent (as are m» and 73,

and 74 and 76), they are not considered the same types.

If type variables are only joined when necessary to ensure well-
typedness, the final solution will be the minimal solution we are
seeking.

5.2 Processing constraints

If the typing rules for a statement impose the constraint that two
types are identical, then the corresponding type variables must be
joined to obey the constraint.

Aninequality constraint (<) between two typesis dightly more
difficult asit may not always be possible to determine, at the time of
processing a statement, whether the two types should be joined. If
the left hand side type variable is associated with a type other than
L, then thetwo type variables must be joined to meet the constraint.
Assume that the left hand side type variable is associated with the
type L at the time a statement is processed. At this point, thereis
no need to join the two type variables. The typing rule for another
statement may subsequently force a change of the type associated
with the type variable implying that the type variable should be
joined with the type variable on the right hand side of the current
constraint.

To deal with this, we associate each type variable with type L
with a set of other type variablesto join with, should the type ever

become anything other than L. If an inequality relation must hold
between two type variables, then we perform a conditional join of
thetwo. If the left hand side type variable has type L, then we add
the right hand side type variable to the set associated with the left
hand sidetypevariable. If theleft hand side type variable hasatype
other than L, then areal join of thetwo type variablesis performed.
Whenever the type associated with atype variable changesfrom L,
either because of a typing rule or because of unification, the type
variable must be joined with the type variablesin the associated set.

The precise rules for processing each statement of the program
aregivenin Figure 5. The details of the join and unification opera-
tionsare givenin Figure 6.

5.3 Complexity

We argue that the algorithm has a linear space and almost linear
time complexity in the size of the input program.

The spacecost of thealgorithmisdetermined by thetotal number
of ECRs created and the number of join operations performed. The
initial number of ECRs is proportional to the number of variables
in the program. The number of ECRs created during the processing
of a single statement is either bounded by a small constant or, in
the case of a procedure call, at worst proportional to the number

X=Y:

letref(m1 x A1) = type(ecr(x))
ref(m x A2) = type(ecr(y)) in

if 71 # 2 then¢j oin(n, 7'2)

if A1 # A2 then Cj oin()\l,)\2)

X =&y:
letref(m1 x _) = type(ecr(x))
T2 = ecr(y) in

if 1 # 1 thenjoin(rl, Tz)

X = *Y:
letref(m1 x A1) = type(ecr(x))
ref(m x _) = type(ecr(y)) in
if type(r2) = L then
settype(, ref(r x A1))
se

let ref(ms x A3z) = type(m2) in
if 71 # m3thencj oin(n, 7'3)
if A1 # Az then cjoin(A, As)

X=0p(Y1... Ya):
fori € [1...n]do
let ref(t1 x A1) = type(ecr(x))
ref(m2 x A2) = type(ecr(y;)) in
if 71 # 7 then ¢join(r, 72)
if \1 #Z A2 thencj oin(/\l,)\2)

x = allocate(y):
letref(r x _) = type(ecr(x)) in
if type(7) = L then
let [61, 62] = MakeECR(Z) in
settype(r, ref(er x e2))

*X =Y
let ref(m1 x _) = type(ecr(x))
ref(r2 x Az) = type(ecr(y))
if type(r1) = L then
settype(n, I’ef(Tz X)\2))
else

let ref(ms x A3) = type(m) in
if 72 # 73 then ¢join(rs, 72)
if A2 # Asthencj Oin(A3,)\2)

x =fun(fi...f,)—=(r1...1m) S':
let ref(_ x X) = type(ecr(x))
if type(A) = L then
settype(\, lam(au . .. an) (@ngi - - - Qngm))
where
ref(a;) =type(ecr(f;)), fori < n
ref(a;) =type(ecr(ri—.)), for: > n
else
letlam(az ... an)(@nt1 ... Qnem) = type(A) in
forz e [1...n]do
let T1 X Al = Q;
ref(m2 x A2) = type(ecr(f;)) in
if 71 # m thenjoin(7z, 1)
if M1 # X2 thenjoin()\z, Al)
fori € [1...m]do
let 71 X A1 = anys
ref(m x A2) = type(ecr(r;)) in
ifri#m thenjoin(rl, 7'2)
if A1 ;é A2 thenjoin(Al, >\2)

X1. - - Xm = P(Y1.--Yn):
letref(_ x \) = type(ecr(p)) in
if type(A) = L then
settype(\, lam(a . .. an)(@ngi ... Qngm))
where
o = T; X)\-;
[1i, Ai] = MakeECR(2)
letlam(az ... an)(@nt1 ... Qntm) = type(A)in
fori € [1...n]do
let 1 X A1 = o4
ref(m2 x A2) = type(ecr(y;)) in
if 71 # 72 then ¢join(ra, 72)
if A1 # Az thencjoin(A, A2)
fori € [1...m]do
let 1 X)\1 = Qn+i
ref(m x A2) = type(ecr(x;)) in
if 11 # mthencj Oin(Tz, Tl)
if A1 # X2 then cjoin(Az, A1)

Figure 5: Inference rules corresponding to the typing rules given in Figure 3. ecr(x) is the ECR representing the type of variable x, and
type(E) is the type associated with the ECR E. cjoin(z, y) performs the conditional join of ECRs z and y, and settype(E, X) associates
ECR E with type X and forcesthe conditional joinswith E. MakeECR(z) constructsalist of 2 new ECRs, each associated with the bottom

type, L.

settype(e, t):
type(e) <t
for z € pending(e) do join(e, z)

cjoin(es, e2):
if type(e2) = L then
pending(ez) < {e1} U pending(ez)
else

join(el, 62)

unify(ref(rl X Al), I’ef(Tz X >\2))Z
if it ;é T2 thenjoin(Tl, Tz)
if A1 # Xz thenjoin(Ag, X2)

unify(lam(aa . .. @) (@t - - - Qpgm),
lam(a] ... an)(Qpy1 .- Cym))
fori € [1...(n+m)] do
let T1 X >\1 = Q5
T2 X)\2 = Ot;- in
if 71 # 7 thenjoin(7i, 72)
if A1 # A2 thenjoin(/\l,)\2)

join(es, e2):
let t1 = type(er)
t2 = type(ez)
e = ecr-union(es, e2) in
if ¢2 = L then
type(e) « t2
if &2 = L then
pending(e) +pending(e1) U
pending(ez)
else
for z € pending(e1) dojoin(e, z)
else
type(e) « t1
if 2= L then
for z € pending(e2) dojoin(e, z)
else
unify(ts,t2)

Figure 6: Rules for unification of two types represented by ECRs. We assume that ecr-union performs a (fast union/find) join operation on
its ECR arguments and returns the value of a subsequent find operation on one of them.

of variables occuring in the statement. The number of ECRs is
consequently proportional to the size of the input program. The
number of join operationsis bounded by the total number of ECRs.
The space cost of a join operation amounts to the (constant) cost
of the ecr-union operation. The cost of unifying/joining component
type ECRs can be attributed to those joins. The cost of performing
a conditional join or ajoin of two type variables with type L is
constant if we use abinary tree structure to represent the “ pending”
Sets.

The time cost of the algorithm is determined by the cost of
traversing the statements of the program, the cost of creating ECRs
and types, the cost of performing join operations, and the cost of
(fast union/find) “find” operations on ECRs. The cost of traversal
and creation of ECRs and types is clearly proportional to the size
of the input program. The cost of performing join operationsis a
constant plus the cost of ECR “find” operations. The average cost
of N ECR“find” operationsare O(Na(N, N)), wherea isa(very
slowly increasing) inverse Ackermann’s function [Tar83]. Thetime
cost complexity of the algorithm is consequently O(Na(N, N)),
where N isthe size of the input program (almost linear in the size
of the input program).

6 Experience

We have implemented a slightly improved version of the above al-
gorithm in our prototype programming system based on the Value
Dependence Graph [WCES94] and implemented in the program-
ming language Scheme[CR91]. Theimplementation uses aweaker
typing rule than presented above for primitive operations return-
ing boolean values and uses predetermined transfer functions for
direct calls of library functions (the algorithm is thus context-
sensitive/polymorhpic for calls to library functions). The analysis
algorithm is routinely applied to the C programs processed by the
system.

Two implementations of an earlier type inference based points-
to analysis algorithm [Ste95a] have been performed at University
of California, San Diego; one in C [Mor95] and one in Scheme
[Gri95]. Both implementations have been augmented to model

6

slots of structured objectsindependently. Our earlier algorithm was
based on the same non-standard type system as used in the present
algorithm but used stricter typing rules, implying that theresultsare
more conservative than they need be.

Our implementation demonstrates that running time of the al-
gorithm is roughly linear in the size of the input program on our
test-suite of around 50 programs. Using our own implementation,
we have performed points-to analysis of programs up to 75,000
lines of code? (an internal Microsoft tool). The running timefor the
algorithm on the 75,000 line C program is approximately 27 sec-
onds (15 seconds process time) on an SGI Indigo2 workstation, or
roughly 4 times the cost of traversing all nodes in the program rep-
resentation. For a 25,000 line C program (LambdaM OO available
from Xerox PARC) the running time is approximately 8 seconds
(5.5 seconds processtime). The analysisis performed as a separate
stage after the program representation has been built.

Morgenthaler’s implementation of our previous algorithm per-
forms the processing of statements during parsing of the program.
Hefoundtheparsetimetoincreaseby approximately 50% by adding
points-to analysis to the parser. Counting only the extra time for
performing the analysis, emacs (127,000 non-empty lines of code)
could be analyzed in approximately 50 seconds, and FEIt (273,000
non-empty linesof code) could be analyzed in approximately 82 sec-
onds on a SparcStation 10 [Mor95]. The present algorithm can also
easily beimplemented to processthe statementsduring parsing. The
running times of the previousand the present algorithm are roughly
the same (only minor fluctuations).

Table 1, Table 2, and Table 3 illustrate the distribution of pro-
gram variables per type variable for a number of benchmark pro-
grams. The programs are from Bill Landi's and Todd Austin's
benchmark suites for their analyses [LRZ93, ABS94] as well as
the SPEC’ 92 benchmark suite. LambdaMOQ is alarge C program
available from Xerox PARC (we used version 1.7.1).

Table 1 givesthe raw distribution for the total analysis solution
when performed on an (almost) unoptimized version of the program
representation. Most of the type variables describe the location

2At the time of writing, this is the largest program represented using the VDG
program representation.

of variables whose addresses are never taken. The type variables
describing zero program variables represent non-_L typesdescribing
user functions and locations allocated by the runtime system (e.g.,
the locationsfor the ar gv and ar gc argumentsto mai n).

Table 2 gives the distribution for those type variables that occur
as|ocation components of other typesin the solution of the analysis
performed on an (almost) unoptimized version of the program rep-
resentation. These type variables represent program variables that
are pointed to by other variables. They do not necessarily repre-
sent al the program variables that are pointed to in the program,
as minor optimizations are performed on the VDG program repre-
sentation asit is being built; some of these optimizations eliminate
storing values in variables if thisis trivial to avoid, as described
in [WCES94]. The number of type variables describing more than
one program location is reduced relative to Table 1. The reduction
ismostly caused by eliminating type variables for values passed to
functions but never pointed to by a pointer. The values would not
have been grouped in the first place, if a polymorphic analysis had
been used.

Table 3 gives the distribution for the location component type
variablesin the solution of the analysis performed on an optimized
version of theprogramrepresentation. Theoptimizationsperformed
on the program representation include alocal transformation elimi-
nating all local variables whose addressis never taken. These type
variables describe the program variables that are the hardest to get
good analysis results for. The program variables are all pointed
to by other program variables which cannot be eliminated by local
transformations. Many of the program variablesdescribed by atype
variable representing no other program variables are candidates for
global optimizations such as being represented by a register rather
than a memory location.

The distributions shown in the tables demonstrate that there are
a considerable number of type variables describing only a single
program variable, even for those type variables describing pointed
to program variables. Most other type variables describe a small
number of program variables. There are a couple of major excep-
tions; type variables describing several hundred program locations.
However, for most of the programs, the locations described by
these exceptional type variables are all global constant strings. For
example, for the LambdaM OO program, the program locations de-
scribed by the “largest” single type variable are al strings passed
as argument to user defined logging and tracing procedures. Any
context-insensitive analysis is bound to show a similar number of
possible pointer values for the formal parameters of these logging
and tracing procedures.

Our subjective evaluation of the quality of the analysis results
isthat they are pretty good, given that the contents of all the slots of
structured variables are represented by a single value type. How-
ever, many programs use data structures such as trees and lists as
central data structures. For these programs the inability to distin-
guish between structure elementsis a serious |0ss.

7 Related work

Henglein used type inference to perform a binding time analysis
in aimost linear time [Hen91]. His types represent binding time
values. He presents a set of typing rules, extract constraints from
the typing rules, and finally solve the constraints by using fast
union/find data structures. Our points-to analysis algorithm was
inspired by Henglein's type inference algorithm.

The points-to analysis that closest resembles our analysis is
Weihl's [Wei80]. His anaysis is aso flow-insensitive, interpro-
cedural, and deals with pointers to functions. His algorithm does
not assume that alias relations are reflexive and transitive, and will

N “
©
o
i —
©
0
0 -
~
o
S e
—
™
— —
—
] —
o —
N -
o o
Q — —
3 —
] —
> -
i
™
R -
© -
Lo —
< — —
0 o [
o — [—
—
2]
=
0 o
N~
© —
L0 o -
< — -
o —
o o~
—
ofl |
o | —
0 o — —
~ I I
© — — — | ey —
LO — — - —
<[| o~ | N[| oo
™ —| = | — o || o~
ORI o NI R | N s o (oo
—sleldgiRisieERIB RN NI
CIREEPELPLCRBLEELRIEISNRR
NS o OIS ERRE S [©iY
cleizRlelNERRSIESRI8RIBIR SRS
= (L |60 [[0 [l | JeCRPNLIEBNGIS
] N I NT NS0T HS
mimr = —
S| s8] =|§|2 Q o
2] K] =
IR S ﬁggﬁ | [0
aEBREERBISEIsc|2| 5l | Elz
|=|8128= 1212|212 125 12|28 (8|8 = (= B2
e EEEEEEEE
S
|18 |5 |5 |5 |5 |8 5|3 |7 |2 |7 < | | 3| 7|%| 7| B3| 3]

Table 1: Number of type variables describing a given number of
program variables for the unoptimized program representation. For
example, for landi:allroots, there are 67 type variables each describ-
ing the location of asingle program variable.

T T ¢ 1T § OO Nepque
T T Zr8 1e9:090s

UUIAR:0ads

T 21 2s:00ds

T 1]:000s
T T T TT T T2 05s9.ds9:990s

IT 2T nojube:oeds

1 ssa.dwiod:0ads

92 2JseAunsne

T T Sy:unsne

TT 1:unsne

T 4 oq:unsne

doudxoeq:unsne

T 2 || weibeue:unsre

€ |[EqN004: IpUe|

1 1 STEX3|:Ipue|

T T T T || Joejnws:ipue|

1 B[1dwoo: Ipue|

T T Jopeo|:jpue|

1 T 2 || elquissse:ipue|

Sjo0l|[e:Ipue|

2o "~"€19 """G82 """ 0eT """€TT """€8 ""'8L ""'¥. """¢S " "Syiv ' €CCETIE0E|6 ' "9S¥ECT]068.9G¥€2T0[68L9S¥ECT 0 | sien Jo #]]
1 1 T T 2T €28 SI8 || OOWepque
T T 2 € gzst Jea:080s

6 1 UUIAR:09ds

T T T T IT 2ZvS 012 95:090s

T T 2 121 v 2 11:090s
T T T T 1T TZT22ZI6T¥T|| 0SSaidse:09ds

ITT 288§ nojubs:0sds

T ¥ 2 || ssesdwoo:osds

I€ T 62 ZioeAunsme

I 21 ¢ SY:unsre

Z ¥ 1:unsne

1 Z z 2SS og:unse

6 T |/dosdxoeq:unsre

T T e € || weibeue:unsre

1 T IT S 1100} IpUe|

T Z STEX3|:Ipue|

1 Z Z1 T 2 2 T21¢ v 2 || Jorjnws:pue|

T T T 0 || /|dwod:ipue|

T IT TI 96 Jopeo|:jpue|

T T T TE€ € 8 Qr| lgwssse:ipue|

TO S10014|[e: IpUe|

29 - €19 """G8¢ " "02T "~ "SIT "~"€8 "'8L ¥, 25 Syiv " EECSIEO0E] 9G¥ E£2T0][68.9G¥£2T0]68.95¥E€2 T 0 || Sen Jo #]]

pointed to program variables for the optimized program representa-

Table 3: Number of type variables describing a given number of
tion.

pointed to program variables for the unoptimized program repre-

Table 2: Number of type variables describing a given number of
sentation.

therefore in some cases produce better results than our agorithm.
On the other hand, his algorithm does not distinguish between one
or several levels of pointer indirection. Additionally, his algorithm
worksbest if acall graphisavailable, and it does not deal elegantly
with recursive functions. His algorithm has atime cost complexity
that is cubic in the size of the input program whereas our algorithm
has an almost linear time cost complexity.

More precise points-to analysis exist, e.g., [CWZ90, EGH94,
WL 95, Ruf95]. These analyses are all flow-sensitive interprocedu-
ral dataflow analyses. Both Chase's algorithm [CWZ90] and Ruf’s
algorithm [Ruf95] are context-insensitiveand have polynomial time
complexity. The two other algorithms are context-sensitive, mean-
ing that the algorithm distinguishes between effects of different
calls of the same function instead of computing just one effect that
isvalid for all calls of the function®. The algorithm by Emami, et.
al., [EGH94] hasaexponential time complexity, asit performsavir-
tual unfolding of all non-recursive calls. The algorithm by Wilson
and Lam [WL95] also has exponential time complexity but islikely
to exhibit polynomial time complexity in practice as it uses partial
transfer functions to summarize the behavior of aready analyzed
functions and procedures.

Whereas a points-to analysis builds and maintains a model of
thestore during analysis, an aliasanalysisbuildsand maintainsalist
of access path expressions that may evaluate to the same location
(in other words: they are aliased). The most relevant alias analysis
algorithms are [LR92, LRZ93]. The length of access-paths are k-
limited, using arelatively simpletruncation mechanismto eliminate
extra path elements.

Deutsch presents an alias analysis for an imperative subset of
ML [Deu92]. Access paths are defined in terms of monomial rela-
tions (akind of multi-variable polynomial expression with structure
accessors as the variables). The analysisis therefore only relevant
for strongly typed languages such as ML and strongly typable pro-
grams written in weakly typed languages such as C (as shown in
[Deudd]). Access paths are combined by unification.

A higher order (context-sensitive) points-to analysis by type
inference has been developed by Tofte and Talpin for the purposes
of creating an ML interpreter without a garbage collector [TT94].
The analysis is based on polymorphic type inference over a non-
standard set of types. They assume a runtime model that makes
allocation regions explicit, where allocation regions resemble the
storage shape graph nodes of our algorithm. Their algorithm does
not deal with objects that may be updated after being assigned an
initial value (asis normal for imperative programs). Whether their
work can be generalized to work for general imperative programs
is an open question.

Andersen defines context-sensitiveand context-insensitiveanal -
yses that are flow-insensitive® points-to analysis in terms of con-
straints and constraint solving [And94]. The context-sensitive al-
gorithm distinguishes between immediate calling contexts in a 1-
limited version of the static program call graph, effectively taking
two layers of context into consideration. The values being con-
strained are sets of abstract locations. Andersen’s algorithm allows
an abstract location to be amember of non-identical sets. Our algo-
rithm only allows an abstract location to be described by one type
representing a set of abstract locations. The size of the solution
of his context-insensitive algorithm is O(A?), and the size of the
solution of his context-sensitivealgorithmis O(A*), where A isthe
number of abstract locations, which in turnis O(exp N), where N

30ur analysis is context-insensitive because the type system is monomorphic. 1
we had used a polymorphic type system and polymorphic type inference, the algorithm
would have been context-sensitive.

“4Andersen uses the term “intra-procedural” to mean “context-insensitive” and the
term “inter-procedural” to mean “context-sensitive”.

is the size of the program®. In contrast, the size of the solution of
our algorithmis O(N).

Choi et al. present both flow-sensitiveand flow-insensitiveanal -
yses[CBC93]. Theflow-insensitive analysisalgorithmis described
in more detail in [BCCH95]. Their algorithm computes alias infor-
mation rather than points-to information but uses a representation
that shares many properties with the storage shape graph. The rep-
resentation allows abstract | ocations to be members of non-identical
sets. Their algorithm isbased on iterated processing of the program
statements and it thus likely to be slower than a similar constraint
based algorithm (such as Andersen’s context-sensitive algorithm
but only considering one level of calling context).

The algorithm presented in this paper is an extension of another
amost linear points-to analysis algorithm [Ste95a]. Bill Landi has
independently arrived at the same earlier algorithm [Lan95]. Bar-
bara Ryder and Sean Zhang are also working on a version of the
earlier algorithm with the extension that elements of composite ob-
jects are represented by separate type components [Zha95].

8 Conclusion and Future Work

We have presented a flow-insensitive, interprocedural, context-
insensitive points-to analysis based on type inference methods with
an amost linear time complexity. The algorithm has been imple-
mented and shown to be very efficient in practice, and we have
found the results to be much better than the results of intraprocedu-
ral analyses.

A problem with the analysis as presented is that it does not
disambiguate information for different elements of structured ob-
jects. The type system can be extended to do so, but the resulting
analysis algorithm will not have an almost linear time complexity.
The agorithm will till be asymptotically faster than other exist-
ing algorithms that does distinguish between different elements of
structured objects.

Our main interest has been devel oping efficient interprocedural
points-to analysis algorithms for large programs. We would like
to develop efficient algorithms yielding greater precision than the
algorithm presented in this paper. Given the algorithm presented in
this paper, there are two possible directions to investigate.

One way to obtain improved results is to develop an efficient
flow-sensitive agorithm. The results from the algorithm presented
in the present paper can be used to prime a data flow analysis
algorithm or otherwise reduce the amount of work to be done by the
algorithm. One possible method is splitting of functiona stores as
suggested in [Ste95b].

Another way to obtainimproved resultsisto develop an efficient
flow-insensitive, context-sensitive algorithm. This can be done
using types to represent sets of locations, as in the aimost linear
time algorithm, but using polymorphic instead of monomorphic
type inference methods.

We are currently pursuing both directions of research.

Acknowledgements

Roger Crew, Michadl Erngt, Erik Ruf, Ellen Spertus, and Daniel
Weise of the Analysts group at Microsoft Research co-developed
the VV DG-based programming environment without which thiswork
would not havecomeinto existence. Membersof the Analystsgroup
also commented on and proofread versions of this paper. The au-
thor also enjoyed interesting discussions with David Morgenthaler,
William Griswold, Barbara Ryder, Sean Zhang, and Bill Landi on

5Tobefair, A isprobably proportional to N in practice.

various points-to analysis algorithms with almost linear time com-
plexity. We would like to thank Bill Landi and Todd Austin for
sharing their benchmark suites with us.

References

[ABS94] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi.
Efficient detection of al pointer and array access er-
rors. In SGPLAN'94: Conference on Programming
Language Design and Implementation, pages 290301,
June 1994.

[And94] Lars Ole Andersen. Program Analysis and Special-
ization for the C Programming Language. PhD the-
sis, Department of Computer Science, University of
Copenhagen, May 1994.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers—Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[BCCHY5] Michael Burke, Paul Carini, Jong-Deok Choi, and
Michael Hind. Flow-insensitive interprocedural aias
analysis in the presence of pointers. In Proceedings
from the 7th International Workshop on Languages
and Compilers for Parallel Computing, volume 892 of
Lecture Notes in Computer Science, pages 234-250.
Springer-Verlag, 1995. Extended version published as
Research Report RC 19546, IBM T.J. Watson Research
Center, September 1994.

[CBC93] Jong-Deok Choi, Michael Burke, and Paul Carini. Ef-
ficient flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In Proceed-
ings of the Twentieth Annual ACM SSGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 232-245, Charleston, South Carolina, January
1993.

[CR9O1] William Clinger and Jonathan Rees (editors). Revised®
report on the algorithmic language Scheme, November
1991.

[CWZ90] David R. Chase, Mark Wegman, and F. Kenneth
Zadeck. Analysis of pointers and structures. In Pro-
ceedings of the SSGPLAN ' 90 Conference on Program-
ming Language Design and Implementation, pages
296-310, June 1990.

[Deud2] Alain Deutsch. A storeless model of aliasing and its
abstractionsusing finite representationsof right-regular
equivalence relations. In International Conference on
Computer Languages, pages 2-13. |IEEE, April 1992.

[Deudd] Alain Deutsch. Interprocedural may-alias analysis for
pointers: Beyond k-limiting. In SGPLAN'94: Con-
ference on Programming Language Design and Imple-
mentation, pages 230241, June 20-24 1994.

[EGH94] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren.
Context-senditive interprocedural points-to analysisin
the presence of function pointers. In SSGPLAN' 94:
Conferenceon Programming LanguageDesignand I m-
plementation, pages 242-256, June 20-24 1994.

[Gri9g] William G. Griswold. Useof algorithmfrom [Ste95a] in
aprogram restructuring tool. Personal communication
at PLDI’95, June 1995.

10

[Hen91]

[KR8S]

[Lan95]

[LR9Z]

[LRZ93]

[Mor95]

[Ruf95]

[Ste954]

[Ste95h]

[Tar83]

[TT94]

[WCES94]

[Weig0]

[WL95]

[Zhaos)

FritzHenglein. Efficient typeinferencefor higher-order
binding-timeanalysis. In Functional Programmingand
Computer Architecture, pages 448-472, 1991.

Brian W. Kernighan and Dennis M. Ritchie. The C
Programming Language, Second edition. PrenticeHall,
1988.

William Landi. Almost linear time points-to analyses.
Personal communication at POPL’ 95, January 1995.

William Landi and Barbara G. Ryder. A safe approx-
imate algorithm for interprocedural pointer aliasing.
In Proceedings of the SGPLAN '92 Conference on
Programming Language Design and Implementation,
pages 235-248, June 1992.

William A. Landi, Barbara G. Ryder, and Sean Zhang.
Interprocedural modification side effect analysis with
pointer aliasing. In Proceedings of the SGPLAN '93
Conferenceon Programming LanguageDesignand Im-
plementation, pages 5667, June 1993.

David Morgenthaler. Poster presentation at PLDI’ 95,
June 1995.

Erik Ruf. Context-insensitive alias analysis reconsid-
ered. In SGPLAN'95 Conference on Programming
Language Design and Implementation, pages 13-22,
June 1995.

Bjarne Steensgaard. Points-to analysis in almost lin-
ear time. Technical Report MSR-TR-95-08, Microsoft
Research, March 1995.

Bjarne Steensgaard. Sparse functional stores for im-
perative programs. In ACM S GPLAN Wbrkshop on In-
termediate Representations (IR 95), pages 62—70, San
Francisco, CA, January 22 1995. Proceedings appear
as March 1995 issue of SIGPLAN Notices.

Robert E. Tarjan. Data structures and network flow
algorithms. In Regional Conference Seriesin Applied
Mathematics, volume CMBS 44 of Regional Confer-
ence Seriesin Applied Mathematics. SIAM, 1983.

Mads Tofte and Jean-Pierre Talpin. |mplementation of
the typed call-by-value A-calculus using a stack of re-
gions. In Proceedings 21st S GPLAN-S GACT Sympo-
sium on Principles of Programming Languages, pages
188-201, January 1994.

Daniel Weise, Roger F. Crew, Michael Ernst, and
Bjarne Steensgaard. Value dependence graphs. Rep-
resentation without taxation. In Proceedings 21st
S GPLAN-S GACT Symposium on Principles of Pro-
gramming Languages, pages 297-310, January 1994.

William E. Weihl. Interprocedural dataflow analysisin
the presence of pointers, procedure variables, and |abel
variables. In Conference Record of the Seventh An-
nual ACM Symposium on Principles of Programming
Languages, pages 83-94, January 1980.

Robert P. Wilsonand MonicaS. Lam. Efficient context-
sensitive pointer analysis for C programs. In SG-
PLAN'’ 95 Conference on Programming Language De-
sign and I mplementation, pages 1-12, June 1995.

Sean Zhang. Poster presentation at PLDI’'95, June
1995.

