CSCI 7135
| ntroduction

Amer Diwan

Goals of the class

* A deep and up-to-date understanding of
— compile-time program analyses
— run-time program analyses
and their applications
* Method
— Read and critique recent and influential papers
— Implement some ideas

Compile-time program analyses

» Discovers properties of programs by looking at its
source
— Local (afew lines of straight line code)
— Global or intraprocedural (full procedure)

— Interprocedural (several procedures)
* Special case: Whole program analysis

Example of compile-time program
analysis

|fx<0then

-
[y=z+1] y=z+5]
b=y>12 /

What are possible values of y?
Does this need local, global (intraprocedural), or interprocedural analysis?

\,

Run-time program analyses

* Discovers properties of programs by examining its
runs

Source Instrumented source

Example of run-time program analysis

Which is the most common target of 0.m()?

Hybrid analyses

» Combines run-time analysis and compile-time
anaysis
— May use acompile-time analysis to reduce
overhead of run-time analysis
— May use run-time analysis to guide compile-time
analysis to hot-spots

First topic: Data-flow analysis

» A commonly used technique for compile-time
anaysis

* Readings:
— Aho, Sethi, and Ullman Sections 10.1 to 10.6; or
— Muchnick Sections 8.1 to 8.4; or
— Relevant sections from your favorite compiler text

e Preliminaries

Outline

— Control flow graphs and basic blocks
* Fundamentals of data flow analysis

» Examples

Basic blocks

* A maximal sequence of instructions s.t.:

— Only the first statement can be reached from
outside the block

— All the statements are executed consecutively if the

first oneis

Control flow graphs

» Nodes: basic blocks

* Edges: B; -> B; iff B; can follow B; immediately in
some execution

* Itisconvenient to insert special entry and exit
nodes

CFG and Basic Block Example
020 1 ey]

f1 0= 1 v
if m<=1 goto L3
i =2
L1{if i <= mgoto L2
feturn f2
L2 f2 :=f0 + f1
fo:.:=f1
fl1:.:=12
i =i+ 1
oto L1

L3 return m

Data-flow analysis example:
reaching definitions

» What definitions of each variable reach each point

PRSV and GEN sets

* A basic block preserves a property if it does not
ater it (i.e., kill it)

» A basic block generates a property if it creates and
and doesn’t subsequently kill it

* Inour example, the property of interest is whether
or not a definition reaches a point in the program

Example continued

l GEN={}
PRSV={1,2,3,4}

i GEN ={2}
GEN={ 1) PRSV = {13}
PRSV={2/4} /

Tk GEN={3 4}
PRSV=(}

What definitions reach the end of each
block?

Definitions reaching beginning of block that are
preserved in the block

+

Definitions generated and not subsequently killed by
the block

RCHout(i) = GEN(i) E (RCHin(i) C PRSV(i))

What definitions reach the beginning of
each block?

Definitions reaching end of at least one of its
predecessors

RCHin(i) = E RCHout(j), st. j is a predecessor of i

Example: RCHin and RCHout sets

Initialize in and out sets to empty; Assume “top-down” visit order
| GEN={}, PRSV={1,2,3,4}
1={3,4}, 0={3,4}

i GEN={2}
g

/ I=(},0=(2}
1={3,4}, 0={2,3}

GEN={1}
PRSV={2,4}
I={}, O={1}
1={3,4}, O={|1,4}
GEN={3,4}
PRSV=(}

1={1,2}, 0={3,4}
1={1,2,3,4}, O={3,4}

Observations from example

IN and OUT arerecursive
— May need multiple iterations to solve equations
* When isone iteration surely enough?

* For many data-flow problems, the IN, OUT,
PRSV, and GEN sets can be represented as bit
vectors

Union = Bit OR
Intersection = Bit AND

Stepsin dataflow analysis
(smplified)

Analysis Dependent
| Formulate the problem to be solved
Analysis Independent
Il Solve the equations induced by |

[11 Propagate the data-flow values to al pointsin the
program from entries to blocks

10

| Formulating the problem

(a) Lattice
— the abstract quantities over which the analysis will
operate (lattice)
— e.g., sets of definitions for avariable
(b) Flow functions

— how each control-flow and computational
construct affects the abstract quantities (flow
functions)

— e.g., build the OUT equations for each statement

|(a) Lattice

A lattice L consists of aset of values and two
operations meet(U) and join(U)
Properties (x,y,z,w1 L):
— $uniquezandw st. xUy =zandxUy =w
— xUy=yUx and xUy=yUx (commutativity)
— (xUy)Uz = xU(yUz) and (xUy)Uz=xU(yUz)
— thgre areunique elements”, T1 L st. xU*=" and
XUT=T

11

Example lattice: Reaching definitions

dl, d2, and d3 are definitions of some variable in the program
T={}

{dT d2} {dIdS} {d2,d3}

A ={d1,d2,d3}

Meet of two elements: follow lines downwards from them until they
meet = set union

Another useful view

Definex | yif andonly if x Uy = x
| isapartia order
— Reflexive: x| x
— Antisymmetric: if x| yandyl xthenx=y
— Transitive: if x| yandyl zthenxi z
The height of the lattice is the longest ascending
chaninit (", x4, ..., xn, T)
What is the lattice height for reaching definitions?

12

|(b) Flow functions

e L® L

» Models the effect of a programming language
construct

e Itismonotoneif " x,y1 L,xI yb f(x)I f(y)

Intuition for data-flow analysis

 Starts by assuming most optimistic values (T) and
applying flow functions until it reaches afixed
point

» At each stage the abstract value of some
“variables’ descend the lattice

* If the effective lattice height w.r.t. the flow
functionsisfinite, then the analysisis guaranteed
to terminate

13

Example lattice: Constant propagation

» At every basic block boundary, for each variable v
— determineif v is a constant
— if so, what isitsvalue

T=don't know

A =not a constant

Flow function for constant propagation

Let an assignment be of the form x;=x, A x,
OUT[b,x] =IN[b,x] if x* x3, otherwise

IN[b,x1][IN[b,x2] |OUT[b,x3]
top top

top c2 top
bottom |bottom
top top

cl c2 cl+c2
bottom |bottom
top bottom

bottom |c2 bottom
bottom |bottom

|1 Solving the data flow equations:
|deal solution

« For each node n : Uf (start-val), for all possibly
executed paths p reaching n

| /[1 []\— |
T, 7

[)

Determining all possibly executed paths is undecidable

Solving the data flow equations:
Meet over al paths

Err in the conservative direction
Meet over all paths (MOP)

— Assume a path exists as long as there is a sequence
of edgesin the code

— MOP(n) = Uf (start-val), for all paths p reaching n
More conservative than ideal

— MOP = IDEAL C Result(unexecuted-paths)

—~ MOPI IDEAL

MOP is also undecidable in the general case

15

Solving the data flow equations:
Maximal fixed point

* More conservative than MOP

» Focuses on edges rather than paths

« MFPI MOPI IDEAL

* MFP=MOPIf al flow functions are distributive
—f(x Uy) =f(x) Uf(y)

* Isthe constant propagation flow function
distributive?

Solving data-flow equations:
Iterative style

" nodes n != Entry, QUT(n) :=T
QUT(Entry) :=init_value
change = TRUE

Wi | e Change {
Change : = FALSE

" nodes i in reverse postorder {
inf[i] = Uout[p], pis a predecessor of
ol dout := out[i]

out[i] :=f,(in[i])
if oldout !'= out[i] then change := TRUE
}
}

16

Wrapping up

» Data-flow analysisis acommon technique for
static program analysis. Other approaches include

— constraint based analyses, and
— abstract interpretation

17

