
1

CSCI 7135
Introduction

Amer Diwan

Goals of the class

• A deep and up-to-date understanding of
– compile-time program analyses

– run-time program analyses

and their applications

• Method
– Read and critique recent and influential papers

– Implement some ideas

2

Compile-time program analyses

• Discovers properties of programs by looking at its
source
– Local (a few lines of straight line code)

– Global or intraprocedural (full procedure)

– Interprocedural (several procedures)
• Special case: Whole program analysis

Example of compile-time program
analysis

z = 7
if x < 0 then

y = z + 5y = z + 1

b = y > 12

What are possible values of y?

Does this need local, global(intraprocedural), or interprocedural analysis?

3

Run-time program analyses

• Discovers properties of programs by examining its
runs

InstrumentSource Instrumented source

Link and run

Example of run-time program analysis

...
o.m()
...

A::m

B::m

C::m

Which is the most common target of o.m()?

4

Hybrid analyses

• Combines run-time analysis and compile-time
analysis
– May use a compile-time analysis to reduce

overhead of run-time analysis

– May use run-time analysis to guide compile-time
analysis to hot-spots

First topic: Data-flow analysis

• A commonly used technique for compile-time
analysis

• Readings:
– Aho, Sethi, and Ullman Sections 10.1 to 10.6; or

– Muchnick Sections 8.1 to 8.4; or

– Relevant sections from your favorite compiler text

5

Outline

• Preliminaries
– Control flow graphs and basic blocks

• Fundamentals of data flow analysis

• Examples

Basic blocks

• A maximal sequence of instructions s.t.:
– Only the first statement can be reached from

outside the block

– All the statements are executed consecutively if the
first one is

6

Control flow graphs

• Nodes: basic blocks

• Edges: Bi -> Bj iff Bj can follow Bj immediately in
some execution

• It is convenient to insert special entry and exit
nodes

CFG and Basic Block Example
receive m

f0 := 0

f1 := 1

if m <= 1 goto L3

i := 2

L1 if i <= m goto L2

return f2

L2 f2 := f0 + f1

f0 := f1

f1 := f2

i := i + 1

goto L1

L3 return m

B1

B2 B3

B6

B4

B5

Exit

1

5

6

2

4
3

Entry

7

Data-flow analysis example:
reaching definitions

• What definitions of each variable reach each point
of a procedure?

k := 10
i := k + i

k := 4 i := 7

PRSV and GEN sets

• A basic block preserves a property if it does not
alter it (i.e., kill it)

• A basic block generates a property if it creates and
and doesn’t subsequently kill it

• In our example, the property of interest is whether
or not a definition reaches a point in the program

8

Example continued

3: k := 10
4: i := k + i

1: k := 4 2: i := 7
GEN = {2}
PRSV = {1,3}

GEN={3,4}
PRSV={}

GEN={1}
PRSV={2,4}

GEN={}
PRSV={1,2,3,4}

What definitions reach the end of each
block?

Definitions reaching beginning of block that are
preserved in the block

+
Definitions generated and not subsequently killed by

the block

RCHout(i) = GEN(i) ∪ (RCHin(i) ∩ PRSV(i))

9

What definitions reach the beginning of
each block?

Definitions reaching end of at least one of its
predecessors

RCHin(i) = ∪ RCHout(j), s.t. j is a predecessor of i

Example: RCHin and RCHout sets

3: k := 10
4: i := k + i

1: k := 4 2: i := 7

GEN={3,4}
PRSV={}
I={1,2}, O={3,4}

GEN={1}
PRSV={2,4}
I={}, O={1}

GEN={}, PRSV={1,2,3,4}
I={}, O={}

Initialize in and out sets to empty; Assume “top-down” visit order

GEN={2}
PRSV={1,3}
I={},O={2}

I={3,4}, O={3,4}

I={3,4}, O={2,3}I={3,4}, O={1,4}

I={1,2,3,4}, O={3,4}

10

Observations from example

• IN and OUT are recursive
– May need multiple iterations to solve equations

• When is one iteration surely enough?

• For many data-flow problems, the IN, OUT,
PRSV, and GEN sets can be represented as bit
vectors

Union = Bit OR
Intersection = Bit AND

Steps in data flow analysis
(simplified)

Analysis Dependent
I Formulate the problem to be solved

Analysis Independent
II Solve the equations induced by I
III Propagate the data-flow values to all points in the

program from entries to blocks

11

I Formulating the problem

(a) Lattice
– the abstract quantities over which the analysis will

operate (lattice)

– e.g., sets of definitions for a variable

(b) Flow functions
– how each control-flow and computational

construct affects the abstract quantities (flow
functions)

– e.g., build the OUT equations for each statement

I(a) Lattice

A lattice L consists of a set of values and two
operations meet(∧) and join(∨)

Properties (x, y, z, w ∈ L):
– ∃ unique z and w s.t. x∧y = z and x∨y = w

– x∧y=y∧x and x∨y=y∨x (commutativity)

– (x∧y)∧z = x∧(y∧z) and (x∨y)∨z=x∨(y∨z)

– there are unique elements ⊥, Τ ∈ L s.t. x∧⊥=⊥ and
x∨Τ=Τ

12

Example lattice: Reaching definitions

Τ={}

{d1} {d2} {d3}

{d1,d2} {d1,d3} {d2,d3}

⊥={d1,d2,d3}

d1, d2, and d3 are definitions of some variable in the program

Meet of two elements: follow lines downwards from them until they
meet = set union

Another useful view

• Define x ⊆ y if and only if x ∧ y = x

• ⊆ is a partial order
– Reflexive: x ⊆ x

– Antisymmetric: if x ⊆ y and y ⊆ x then x = y

– Transitive: if x ⊆ y and y ⊆ z then x ⊆ z

• The height of the lattice is the longest ascending
chain in it (⊥, x1, ..., xn, Τ)

• What is the lattice height for reaching definitions?

13

I(b) Flow functions

• f: L → L

• Models the effect of a programming language
construct

• It is monotone if ∀ x, y ∈ L, x ⊆ y ⇒ f(x) ⊆ f(y)

Intuition for data-flow analysis

• Starts by assuming most optimistic values (Τ) and
applying flow functions until it reaches a fixed
point

• At each stage the abstract value of some
“variables” descend the lattice

• If the effective lattice height w.r.t. the flow
functions is finite, then the analysis is guaranteed
to terminate

14

Example lattice: Constant propagation

• At every basic block boundary, for each variable v
– determine if v is a constant

– if so, what is its value

Τ=don’t know

⊥=not a constant

... -1 0 1 2 ...

Flow function for constant propagation

Let an assignment be of the form x3 = x2 ⊕ x1
OUT[b,x] = IN[b,x] if x ≠ x3, otherwise

IN[b,x1] IN[b,x2] OUT[b,x3]
top top

top c2 top
bottom bottom
top top

c1 c2 c1+c2
bottom bottom
top bottom

bottom c2 bottom
bottom bottom

15

II Solving the data flow equations:
Ideal solution

• For each node n : ∧fp(start-val), for all possibly
executed paths p reaching n

x=1x=0

y > 0

Determining all possibly executed paths is undecidable

Solving the data flow equations:
Meet over all paths

• Err in the conservative direction

• Meet over all paths (MOP)
– Assume a path exists as long as there is a sequence

of edges in the code

– MOP(n) = ∧fp(start-val), for all paths p reaching n

• More conservative than ideal
– MOP = IDEAL ∩ Result(unexecuted-paths)

– MOP ⊆ IDEAL

• MOP is also undecidable in the general case

16

Solving the data flow equations:
Maximal fixed point

• More conservative than MOP

• Focuses on edges rather than paths

• MFP ⊆ MOP ⊆ IDEAL

• MFP = MOP if all flow functions are distributive
– f(x ∧ y) = f(x) ∧ f(y)

• Is the constant propagation flow function
distributive?

Solving data-flow equations:
Iterative style

∀∀ nodes n != Entry, OUT(n) := ΤΤ
OUT(Entry) := init_value

change = TRUE

While Change {

 Change := FALSE

 ∀ ∀ nodes i in reverse postorder {
 in[i] = ∧∧ out[p], p is a predecessor of i
 oldout := out[i]

 out[i] := fi(in[i])

 if oldout != out[i] then change := TRUE

 }

}

17

Wrapping up

• Data-flow analysis is a common technique for
static program analysis. Other approaches include
– constraint based analyses, and

– abstract interpretation

