Game-theoretic Randomization for Security Patrolling with Dynamic Execution Uncertainty

Albert Xin Jiang, Zhengyu Yin, Chao Zhang, Milind Tambe University of Southern California USA

Sarit Kraus
Bar-Ilan University
Israel

Presented: 5/8/13

Time-critical Security Patrolling Games

■ Timing affecting patrol effectiveness

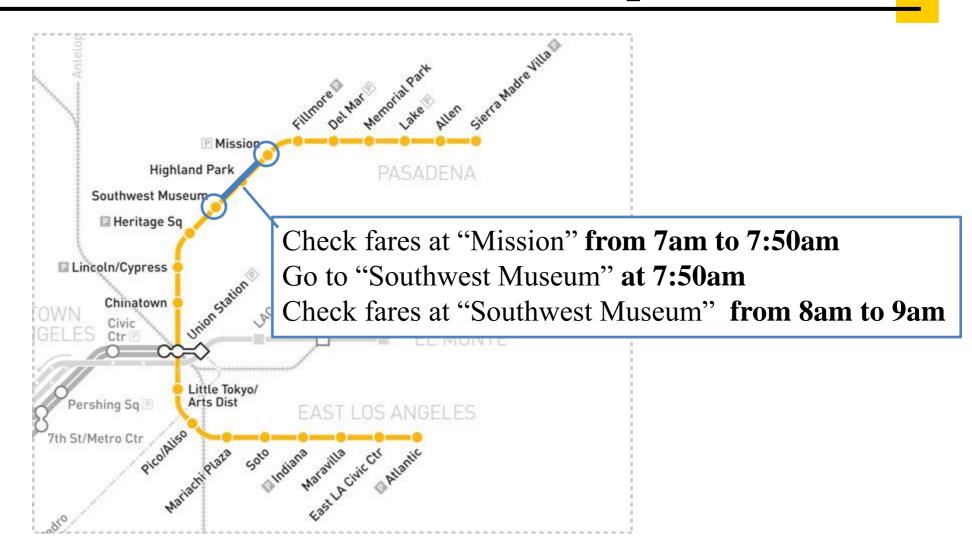
TRUSTS:
Fare inspection in
LA Metro Rail
(Yin et al, 2012)

Ferry escort in New York (Fang et al, 2013)

PROTECT:
Patrolling Port of Boston
(Shieh et al, 2012, 2013)

Presented: 5/8/13

TRUSTS: Randomized Fare Inspection

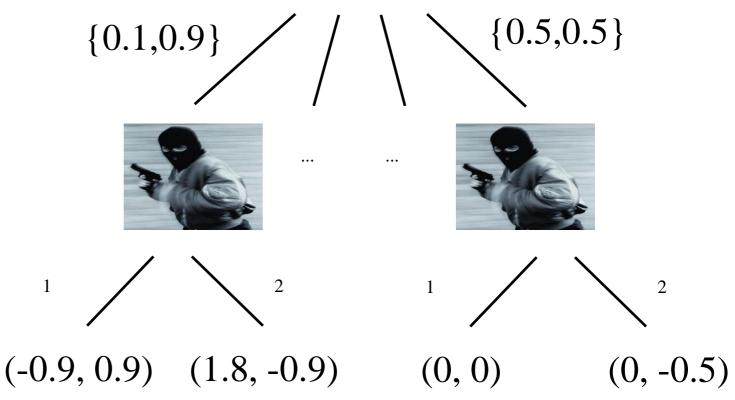


■ In collaboration with LA Sheriff's Dept (Yin et al 2012)

Stackelberg Equilibrium

Attackers use surveillance in planning attacks

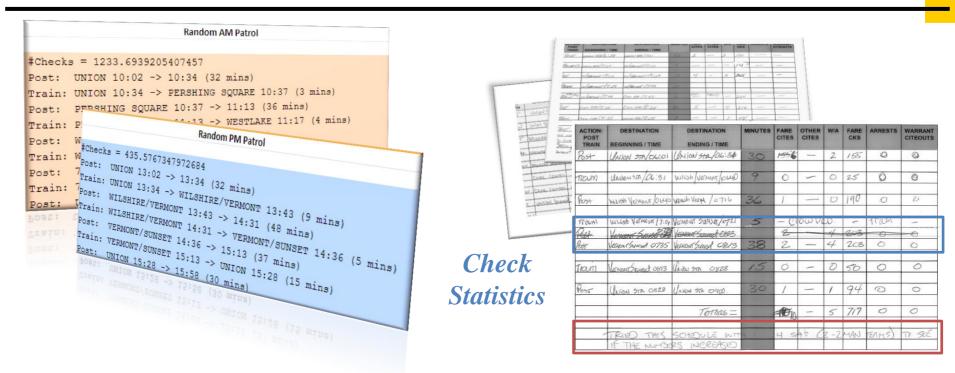
Defender commits to a mixed strategy



Presented: 5/8/13

Albert Xin Jiang

Field tests of TRUSTSv1 (2012)



Remarks

Feedback: officer often deviate from schedules

- Felony arrest
- Called to deal with emergencies

Problem: Dynamic Execution Uncertainty

- Execution uncertainty can affect the defender units' ability to carry out their planned schedules in later time steps
- Want robust patrol schedules with contingency plans

- Related work on uncertainty in security games
 - either only applicable to static domains (Yin et al 2011; 2012)
 - or consider general dynamic game formulations (NP-hard)
 - (Letchford et al 2010; 2012; Vorobeychik et al 2012)

Contributions

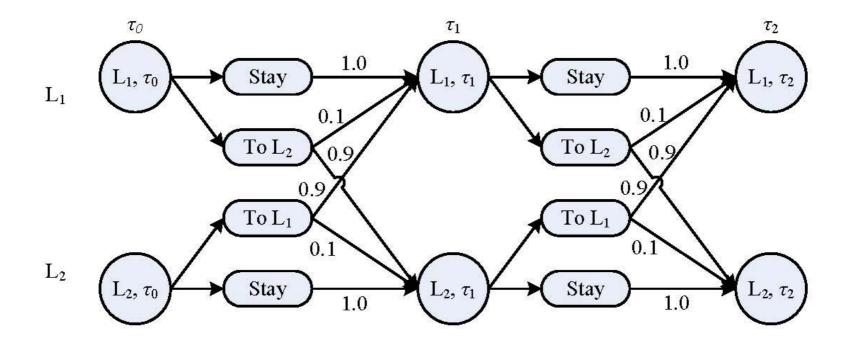
- General Stackelberg game model for patrolling with execution uncertainty
 - Markov Decision Processes model of defender
 - Exponential number of defender strategies
- Efficient algorithm when utility functions are separable
 - Payoffs decomposed into sum over state transitions
- Applied to TRUSTS system; deployed at LA Metro
- Planning + Game Theory

Presented: 5/8/13

• Execution uncertainty \rightarrow uncertainty in the environment

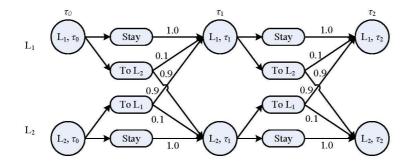
Patrolling game with execution uncertainty

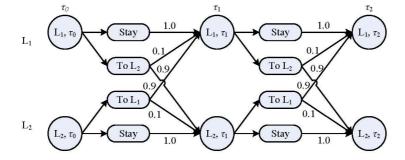
- Two-player Bayesian Stackelberg game
 - Leader (defender) has multiple units; an MDP for each unit



Patrolling game with execution uncertainty

- Two-player Bayesian Stackelberg game
 - Leader (defender) has multiple units; an MDP for each unit



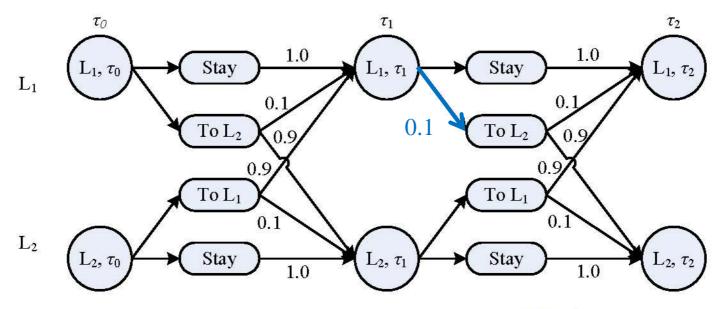


Patrolling game with execution uncertainty

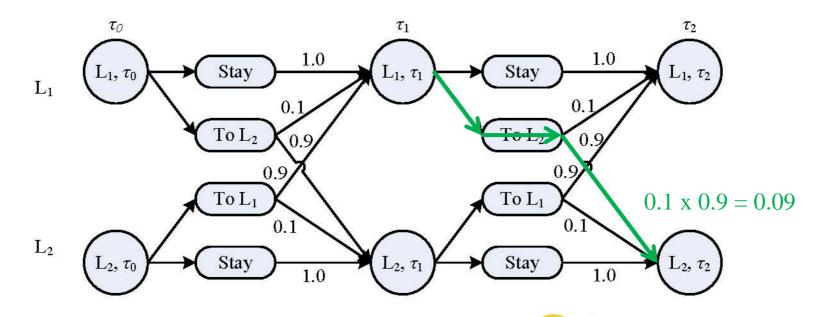
- Two-player Bayesian Stackelberg game
 - Leader (defender) has multiple units; an MDP for each unit
 - Multiple types of attacker
- In general, utility depends on:
 - joint trajectory of defender units $(t_1, t_2, ...)$
 - attacker type λ and action α
- Optimal strategy coupled & non-Markovian

TEAM CORE

- Challenge: exponential # of defender pure strategies
- Compact representation of defender mixed strategies using marginal probabilities $w_i(s,a)$, $x_i(s,a,s')$



- Challenge: exponential # of defender pure strategies
- Compact representation of defender mixed strategies using marginal probabilities $w_i(s,a)$, $x_i(s,a,s')$



Presented: 5/8/13

TEAMCORE Albert Xin Jiang

- Challenge: exponential # of defender pure strategies
- Compact representation of defender mixed strategies using marginal probabilities $w_i(s,a)$, $x_i(s,a,s')$

$$x_{i}(s_{i}, a_{i}, s'_{i}) = w_{i}(s_{i}, a_{i})T_{i}(s_{i}, a_{i}, s'_{i}), \forall s_{i}, a_{i}, s'_{i}$$

$$\sum_{s'_{i}, a'_{i}} x_{i}(s'_{i}, a'_{i}, s_{i}) = \sum_{a_{i}} w_{i}(s_{i}, a_{i}), \forall s_{i}$$

$$\sum_{a_{i}} w_{i}(s^{+}_{i}, a_{i}) = \sum_{s'_{i}, a'_{i}} x_{i}(s'_{i}, a'_{i}, s^{-}_{i}) = 1,$$

$$w_{i}(s_{i}, a_{i}) \geq 0, \forall s_{i}, a_{i}$$

- Can we use this compact representation to solve the game?
 - Yes, if expected utility can be expressed in terms of $x_i(s,a,s')$

Presented: 5/8/13 Albert Xin Jiang

- Can we express expected utility in terms of $x_i(s,a,s')$?
- Yes, if utility functions have separable structure
 - sum over individual transitions of trajectory

$$\sum_{i} \sum_{(s_i, a_i, s_i') \in t_i} U^d(s_i, a_i, s_i', \alpha, \lambda)$$

natural generalization of rewards in MDPs

LP Formulation for Zero-sum Games

Size is polynomial using compact representation

$$\max_{\mathbf{w}, \mathbf{x}, \mathbf{u}} \sum_{\lambda \in \Lambda} p_{\lambda} u_{\lambda} + \sum_{i} \sum_{s_{i}, a_{i}, s_{i}'} x_{i}(s_{i}, a_{i}, s_{i}') R_{i}(s_{i}, a_{i}, s_{i}')$$

$$x_{i}(s_{i}, a_{i}, s_{i}') = w_{i}(s_{i}, a_{i}) T_{i}(s_{i}, a_{i}, s_{i}'), \forall s_{i}, a_{i}, s_{i}'$$

$$\sum_{s_{i}', a_{i}'} x_{i}(s_{i}', a_{i}', s_{i}) = \sum_{a_{i}} w_{i}(s_{i}, a_{i}), \forall s_{i}$$

$$\sum_{a_{i}} w_{i}(s_{i}^{+}, a_{i}) = \sum_{s_{i}', a_{i}'} x_{i}(s_{i}', a_{i}', s_{i}^{-}) = 1,$$

$$w_{i}(s_{i}, a_{i}) \geq 0, \forall s_{i}, a_{i}$$

$$u_{\lambda} < \mathbf{x}^{T} U_{\lambda}^{d} \mathbf{e}_{\alpha}, \forall \lambda \in \Lambda, \ \alpha \in \mathcal{A},$$

LP Formulation for Zero-sum Games

- Size is polynomial using compact representation
- Expected utility linear in $x_i(s,a,s')$

$$\max_{\mathbf{w}, \mathbf{x}, \mathbf{u}} \sum_{\lambda \in \Lambda} p_{\lambda} u_{\lambda} + \sum_{i} \sum_{s_{i}, a_{i}, s'_{i}} x_{i}(s_{i}, a_{i}, s'_{i}) R_{i}(s_{i}, a_{i}, s'_{i})$$

$$x_{i}(s_{i}, a_{i}, s'_{i}) = w_{i}(s_{i}, a_{i}) T_{i}(s_{i}, a_{i}, s'_{i}), \forall s_{i}, a_{i}, s'_{i}$$

$$\sum_{s'_{i}, a'_{i}} x_{i}(s'_{i}, a'_{i}, s_{i}) = \sum_{a_{i}} w_{i}(s_{i}, a_{i}), \forall s_{i}$$

$$\sum_{a_{i}} w_{i}(s^{+}_{i}, a_{i}) = \sum_{s'_{i}, a'_{i}} x_{i}(s'_{i}, a'_{i}, s^{-}_{i}) = 1,$$

$$w_{i}(s_{i}, a_{i}) \geq 0, \forall s_{i}, a_{i}$$

$$u_{\lambda} \leq \mathbf{x}^{T} U_{\lambda}^{d} \mathbf{e}_{\alpha}, \forall \lambda \in \Lambda, \ \alpha \in \mathcal{A},$$

Generating Patrol Schedules

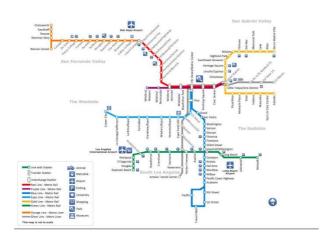
- Calculate decoupled Markov randomized policy
 - State \rightarrow distribution over actions

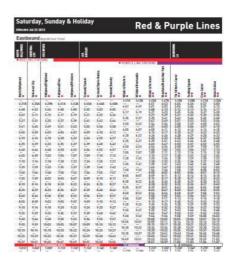
$$\pi_i(s_i, a_i) = \frac{w_i(s_i, a_i)}{\sum_{a_i'} w_i(s_i, a_i')}$$

- Practical deployment:
 - Sample an action from each state
 - deterministic MDP policy; provides contingency plan

Application to LA Metro

- Red, Blue, Gold, and Green Lines
 - Timetable from http://www.metro.net.
 - Data provided by the LASD.



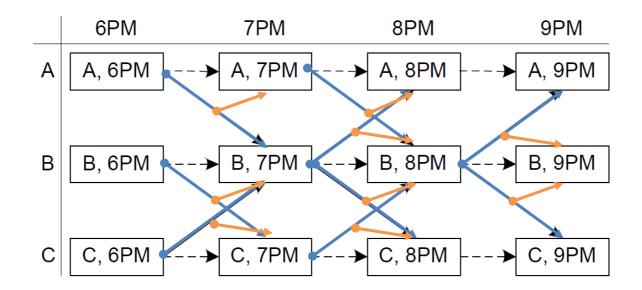


Presented: 5/8/13

Albert Xin Jiang

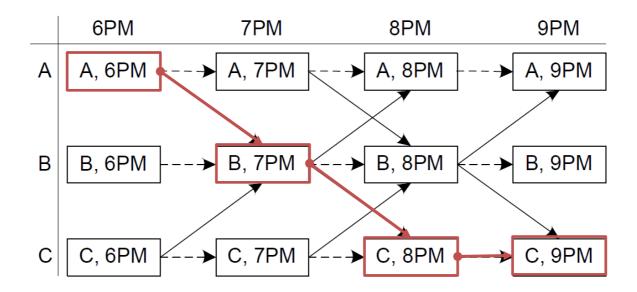
LA Metro: Defender Model

- Defender's MDP for each unit:
 - Actions: take train or stay at station
 - Possibility of delay



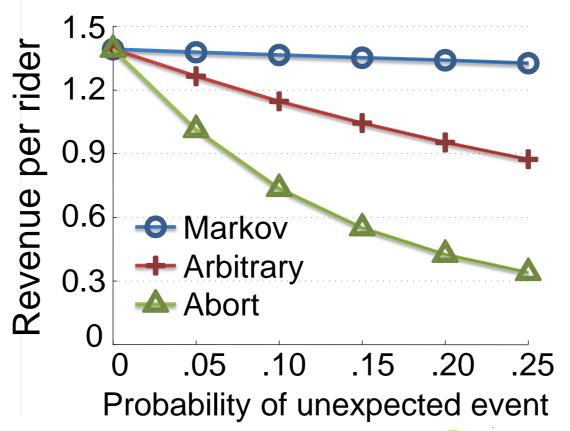
LA Metro: Riders (Potential Fare Evaders)

- Multiple types of riders:
 - Each type takes fixed route
 - Makes a binary decision: buy or not buy the ticket
- Zero-sum, approximately separable



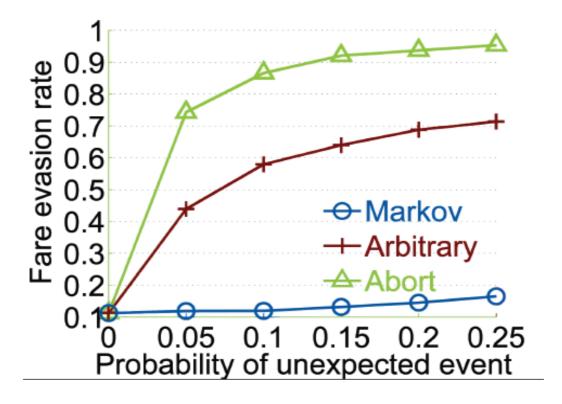
Evaluation

- Revenue per rider with execution uncertainty
 - Markov strategy (TRUSTSv2) vs. TRUSTSv1 with simple contingency plans (Arbitrary, Abort)



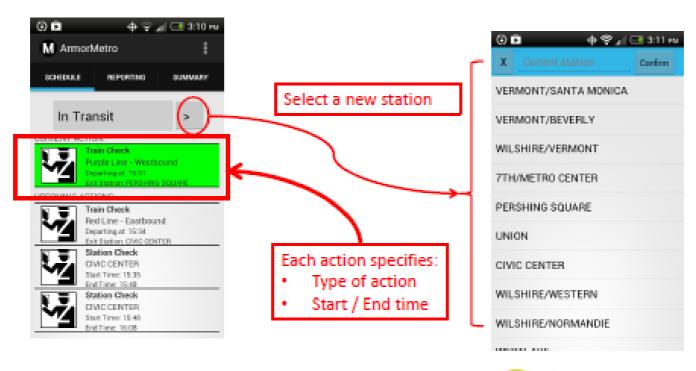
Evaluation

- Fare evasion rate with execution uncertainty
 - Markov strategy (TRUSTSv2) vs. TRUSTSv1 with simple contingency plans (Arbitrary, Abort)



TRUSTSv2 Mobile Phone App

- Present patrol strategy (state to action mapping) to officers
- Collect patrol statistics
- Come see our demo! Thursday 10-11am, 3:30-4:30pm



Summary

- Security patrolling with dynamic execution uncertainty
 - Stackelberg game model
 - MDPs to model probabilistic transitions for defender
 - Efficient computation for separable utilities
 - Compact LP for zero-sum games
 - Deployed to the LA Metro domain w/ mobile app
- Opens door to applications of techniques from planning under uncertainty
 - Avoids intractability of general dynamic games