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Abstract

Action-Graph Games (AGGs) (Bhat & Leyton-Brown 2004)
are a fully expressive game representation which can com-
pactly express strict and context-specific independence and
anonymity structure in players’ utility functions. We present
an efficient algorithm for computing expected payoffs under
mixed strategy profiles. This algorithm runs in time polyno-
mial in the size of the AGG representation (which is itself
polynomial in the number of players when the in-degree of
the action graph is bounded). We also present an extension to
the AGG representation which allows us to compactly repre-
sent a wider variety of structured utility functions.1

Introduction
Game-theoretic models have recently been very influen-
tial in the computer science community. In particu-
lar, simultaneous-action games have received considerable
study, which is reasonable as these games are in a sense the
most fundamental. In order to analyze these models, it is of-
ten necessary to compute game-theoretic quantities ranging
from expected utility to Nash equilibria.

Most of the game theoretic literature presumes that
simultaneous-action games will be represented in normal
form. This is problematic because quite often games of in-
terest have a large number of players and a large set of ac-
tion choices. In the normal form representation, we store
the game’s payoff function as a matrix with one entry for
each player’s payoff under each combination of all players’
actions. As a result, the size of the representation grows
exponentially with the number of players. Even if we had
enough space to store such games, most of the computations
we’d like to perform on these exponential-sized objects take
exponential time.

Fortunately, most large games of any practical interest
have highly structured payoff functions, and thus it is possi-
ble to represent them compactly. (Intuitively, this is why
humans are able to reason about these games in the first
place: we understand the payoffs in terms of simple rela-
tionships rather than in terms of enormous look-up tables.)
One influential class of representations exploit strict inde-
pendencies between players’ utility functions; this class in-
clude graphical games (Kearns, Littman, & Singh 2001),
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1We would like to acknowledge the contributions of Navin A.R.
Bhat, who is one of the authors of the paper which this work ex-
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multi-agent influence diagrams (Koller & Milch 2001), and
game nets (LaMura 2000). A second approach to compactly
representing games focuses on context-specific independen-
cies in agents’ utility functions – that is, games in which
agents’ abilities to affect each other depend on the actions
they choose. Since the context-specific independencies con-
sidered here are conditioned on actions and not agents, it is
often natural to also exploit anonymity in utility functions,
where each agent’s utilities depend on the distribution of
agents over the set of actions, but not on the identities of
the agents. Examples include congestion games (Rosenthal
1973) and local effect games (LEGs) (Leyton-Brown & Ten-
nenholtz 2003). Both of these representations make assump-
tions about utility functions, and as a result cannot represent
arbitrary games. Bhat & Leyton-Brown (2004) introduced
action graph games (AGGs). Similar to LEGs, AGGs use
graphs to represent the context-specific independencies of
agents’ utility functions, but unlike LEGs, AGGs can rep-
resent arbitrary games. Bhat & Leyton-Brown proposed an
algorithm for computing expected payoffs using the AGG
representation. For AGGs with bounded in-degree, their al-
gorithm is exponentially faster than normal-form-based al-
gorithms, yet still exponential in the number of players.

In this paper we make several significant improvements to
results in (Bhat & Leyton-Brown 2004). First, we present
an improved algorithm for computing expected payoffs. Our
new algorithm is able to better exploit anonymity structure
in utility functions. For AGGs with bounded in-degree, our
algorithm is polynomial in the number of players. We
then extend the AGG representation by introducing function
nodes. This feature allows us to compactly represent a wider
range of structured utility functions. We also describe com-
putational experiments which confirm our theoretical pre-
dictions of compactness and computational speedup.

Action Graph Games
An action-graph game (AGG) is a tuple 〈N,S, ν, u〉. Let
N = {1, . . . , n} denote the set of agents. Denote by S =∏

i∈N Si the set of action profiles, where
∏

is the Cartesian
product and Si is agent i’s set of actions. We denote by
si ∈ Si one of agent i’s actions, and s ∈ S an action profile.

Agents may have actions in common. Let S ≡ ⋃
i∈N Si

denote the set of distinct action choices in the game. Let
∆ denote the set of configurations of agents over actions.
A configuration D ∈ ∆ is an ordered tuple of |S| inte-
gers (D(s), D(s′), . . .), with one integer for each action in
S. For each s ∈ S, D(s) specifies the number of agents
that chose action s ∈ S. Let D : S 7→ ∆ be the func-



tion that maps from an action profile s to the corresponding
configuration D. These shared actions express the game’s
anonymity structure: agent i’s utility depends only on her
action si and the configuration D(s).

Let G be the action graph: a directed graph having one
node for each action s ∈ S. The neighbor relation is given
by ν : S 7→ 2S . If s′ ∈ ν(s) there is an edge from s′ to s. Let
D(s) denote a configuration over ν(s), i.e. D(s) is a tuple
of |ν(s)| integers, one for each action in ν(s). Intuitively,
agents are only counted in D(s) if they take an action which
is an element of ν(s). ∆(s) is the set of configurations over
ν(s) given that some player has played s.2 Similarly we
define D(s) : S 7→ ∆(s) which maps from an action profile
to the corresponding configuration over ν(s).

The action graph expresses context-specific independen-
cies of utilities of the game: ∀i ∈ N , if i chose action
si ∈ S, then i’s utility depends only on the numbers of
agents who chose actions connected to s, which is the con-
figuration D(si)(s). In other words, the configuration of ac-
tions not in ν(si) does not affect i’s utility.

We represent the agents’ utilities using a tuple of |S| func-
tions u ≡ (us, us′ , . . .), one for each action s ∈ S. Each us

is a function us : ∆(s) 7→ R. So if agent i chose action
s, and the configuration over ν(s) is D(s), then agent i’s
utility is us(D(s)). Observe that all agents have the same
utility function, i.e. conditioned on choosing the same ac-
tion s, the utility each agent receives does not depend on the
identity of the agent. For notational convenience, we define
u(s,D(s)) ≡ us(D(s)) and ui(s) ≡ u(si,D(si)(s)).

Bhat & Leyton-Brown (2004) provided several examples
of AGGs, showing that AGGs can represent arbitrary games,
graphical games and games exhibiting context-specific in-
dependence without any strict independence. Due to space
limits we do not reproduce these examples here.

Size of an AGG Representation
We have claimed that action graph games provide a way of
representing games compactly. But what exactly is the size
of an AGG representation? And how does this size grow as
the number of agents n grows? Let I = maxs |ν(s)|,
i.e. the maximum in-degree of the action graph. The size of
an AGG representation is dominated by the size of its utility
functions.3 For each action s, we need to specify a utility
value for each distinct configuration D(s) ∈ ∆(s). The set
of configurations ∆(s) can be derived from the action graph,
and can be sorted in lexicographical order. So we do not
need to explicitly specify ∆(s); we can just specify a list
of |∆(s)| utility values that correspond to the (ordered) set
of configurations.4 |∆(s)|, the number of distinct configu-

2If action s is in multiple players’ action sets (say players i, j),
and these action sets do not completely overlap, then it is possible
that the set of configurations given that i played s (denoted ∆(s,i))
is different from the set of configurations given that j played s.
∆(s) is the union of these sets of configurations.

3The action graph can be represented as neighbor lists, with
space complexity O(|S|I).

4This is the most compact way of representing the utility func-
tions, but does not provide easy random access of the utilities.

rations over ν(s), in general does not have a closed-form
expression. Instead, we consider the operation of extending
all agents’ action sets via ∀i : Si 7→ S. Now the num-
ber of configurations over ν(s) is an upper bound on |∆(s)|.
The bound is the number of (ordered) combinatorial com-
positions of n − 1 (since one player has already chosen s)
into |ν(s)|+ 1 nonnegative integers, which is (n−1+|ν(s)|)!

(n−1)!|ν(s)|! .
Then the total space required for the utilities is bounded
from above by |S| (n−1+I)!

(n−1)!I! . If I is bounded by a constant
as n grows, the representation size grows like O(|S|nI), i.e.
polynomially with respect to n.

For each AGG, there exists a unique induced normal form
representation with the same set of players and |Si| actions
for each i; its utility function is a matrix that specifies each
player i’s payoff for each possible action profile s ∈ S. This
implies a space complexity of n

∏n
i=1 |Si|. When Si ≡ S

for all i, this becomes n|S|n, which grows exponentially
with respect to n. The number of payoff values stored
in an AGG representation is always less than or equal to the
number of payoff values in the induced normal form rep-
resentation. For each entry in the induced normal form
which represents i’s utility under action profile s, there exists
a unique action profile s in the AGG with the corresponding
action for each player. This s induces a unique configuration
D(s) over the AGG’s action nodes. By construction of the
AGG utility functions, D(s) together with si determines a
unique utility usi(D(si)(s)) in the AGG. Furthermore, there
are no entries in the AGG utility functions that do not corre-
spond to any action profile (si, s−i) in the normal form. This
means that there exists a many-to-one mapping from entries
of normal form to utilities in the AGG. Of course, the AGG
representation has the extra overhead of representing the ac-
tion graph, which is bounded by |S|I. But asymptotically,
AGG’s space complexity is never worse than the equivalent
normal form.

Computing with AGGs
One of the main motivations of compactly representing
games is to do efficient computation on the games. We
focus on the computational task of computing expected pay-
offs under a mixed strategy profile. Besides being impor-
tant in itself, this task is an essential component of many
game-theoretic applications, e.g. computing best responses,
Govindan and Wilson’s continuation methods for finding
Nash equilibria (2003; 2004), the simplicial subdivision al-
gorithm for finding Nash equilibria (van der Laan, Talman,
& van der Heyden 1987), and finding correlated equilibria
using Papadimitriou’s algorithm (2005).

Let ϕ(X) denote the set of all probability distributions
over a set X . Define the set of mixed strategies for i as
Σi ≡ ϕ(Si), and the set of all mixed strategy profiles as Σ ≡∏

i∈N Σi. We denote an element of Σi by σi, an element of
Σ by σ, and the probability that i plays action s as σi(s).

Therefore, when we want to do computation using AGG, we may
convert each utility function us to a data structure that efficiently
implements a mapping from sequences of integers to (floating-
point) numbers, (e.g. tries, hash tables or Red-Black trees), with
space complexity in the order of O(I|∆(s)|).



Define the expected utility to agent i for playing pure
strategy si, given that all other agents play the mixed strat-
egy profile σ−i, as

V i
si

(σ−i) ≡
∑

s−i∈S−i

ui(si, s−i) Pr(s−i|σ−i). (1)

where Pr(s−i|σ−i) =
∏

j 6=i σj(sj) is the probability of s−i

under the mixed strategy σ−i.
Equation (1) is a sum over the set S−i of action profiles

of players other than i. The number of terms is
∏

j 6=i |Sj |,
which grows exponentially in n. Thus (1) is an exponen-
tial time algorithm for computing V i

si
(σ−i). If we were us-

ing the normal form representation, there really would be
|S−i| different outcomes to consider, each with potentially
distinct payoff values, so evaluation Equation (1) is the best
we could do.

Can we do better using the AGG representation? Since
AGGs are fully expressive, representing a game without any
structure as an AGG would not give us any computational
savings compared to the normal form. Instead, we are inter-
ested in structured games that have a compact AGG repre-
sentation. In this section we present an algorithm that given
any i, si and σ−i, computes the expected payoff V i

si
(σ−i)

in time polynomial with respect to the size of the AGG rep-
resentation. In other words, our algorithm is efficient if the
AGG is compact, and requires time exponential in n if it
is not. In particular, recall that for classes of AGGs whose
in-degrees are bounded by a constant, their sizes are polyno-
mial in n. As a result our algorithm will be polynomial in n
for such games.

First we consider how to take advantage of the context-
specific independence structure of the AGG, i.e. the fact
that i’s payoff when playing si only depends on the config-
urations in the neighborhood of i. This allows us to project
the other players’ strategies into smaller action spaces that
are relevant given si. Intuitively we construct a graph from
the point of view of an agent who took a particular action,
expressing his indifference between actions that do not af-
fect his chosen action. This can be thought of as inducing a
context-specific graphical game. Formally, for every action
s ∈ S define a reduced graph G(s) by including only the
nodes ν(s) and a new node denoted ∅. The only edges in-
cluded in G(s) are the directed edges from each of the nodes
ν(s) to the node s. Player j’s action sj is projected to a
node s

(s)
j in the reduced graph G(s) by the following map-

ping: s
(s)
j ≡

{
sj sj ∈ ν(s)
∅ sj 6∈ ν(s) . In other words, actions

that are not in ν(s) (and therefore do not affect the payoffs of
agents playing s) are projected to ∅. The resulting projected
action set S

(s)
j has cardinality at most min(|Sj |, |ν(s)|+ 1).

We define the set of mixed strategies on the projected ac-
tion set S

(s)
j by Σ(s)

j ≡ ϕ(S(s)
j ). A mixed strategy σj on

the original action set Sj is projected to σ
(s)
j ∈ Σ(s)

j by the
following mapping:

σ
(s)
j (s(s)

j ) ≡
{

σj(sj) sj ∈ ν(s)∑
s′∈Si\ν(s) σj(s′) s

(s)
j = ∅ . (2)

So given si and σ−i, we can compute σ
(si)
−i in O(n|S|) time

in the worst case. Now we can operate entirely on the pro-
jected space, and write the expected payoff as

V i
si

(σ−i) =
∑

s
(si)
−i ∈S

(si)
−i

u(si,D(si)(si, s−i)) Pr(s(si)
−i |σ(si)

−i )

where Pr(s(si)
−i |σ(si)

−i ) =
∏

j 6=i σ
(si)
j (s(si)

j ). The summation

is over S
(si)
−i , which in the worst case has (|ν(si)|+ 1)(n−1)

terms. So for AGGs with strict or context-specific indepen-
dence structure, computing V i

si
(σ−i) this way is much faster

than doing the summation in (1) directly. However, the time
complexity of this approach is still exponential in n.

Next we want to take advantage of the anonymity struc-
ture of the AGG. Recall from our discussion of representa-
tion size that the number of distinct configurations is usually
smaller than the number of distinct pure action profiles. So
ideally, we want to compute the expected payoff V i

si
(σ−i)

as a sum over the possible configurations, weighted by their
probabilities:

V i
si

(σ−i) =
∑

D(si)∈∆(si,i)

ui(si, D
(si))Pr(D(si)|σ(si)) (3)

where σ(si) ≡ (si, σ
(si)
−i ) and

Pr(D(si)|σ(si)) =
∑

s:D(si)(s)=D(si)

N∏

j=1

σj(sj) (4)

which is the probability of D(si) given the mixed strategy
profile σ(si). Equation (3) is a summation of size |∆(si,i)|,
the number of configurations given that i played si, which is
polynomial in n if I is bounded. The difficult task is to com-
pute Pr(D(si)|σ(si)) for all D(si) ∈ ∆(si,i), i.e. the proba-
bility distribution over ∆(si,i) induced by σ(si). We observe
that the sum in Equation (4) is over the set of all action pro-
files corresponding to the configuration D(si). The size of
this set is exponential in the number of players. Therefore
directly computing the probability distribution using Equa-
tion (4) would take exponential time in n. Indeed this is the
approach proposed in (Bhat & Leyton-Brown 2004).

Can we do better? We observe that the players’ mixed
strategies are independent, i.e. σ is a product probability
distribution σ(s) =

∏
i σi(si). Also, each player affects the

configuration D independently. This structure allows us to
use dynamic programming (DP) to efficiently compute the
probability distribution Pr(D(si)|σ(si)). The intuition be-
hind our algorithm is to apply one agent’s mixed strategy
at a time. Let σ

(si)
1...k denote the projected strategy profile

of agents {1, . . . , k}. Denote by ∆(si)
k the set of configu-

rations induced by actions of agents {1, . . . , k}. Similarly
denote D

(si)
k ∈ ∆(si)

k . Denote by Pk the probability distri-
bution on ∆(si)

k induced by σ
(si)
1...k, and by Pk[D] the prob-

ability of configuration D. At iteration k of the algorithm,
we compute Pk from Pk−1 and σ

(si)
k . After iteration n, the

algorithm stops and returns Pn. The pseudocode of our DP
algorithm is shown as Algorithm 1. Due to space limits we
omit the proof of correctness of our algorithm.



Algorithm 1 Computing the induced probability distribu-
tion Pr(D(si)|σ(si)).

Algorithm ComputeP
Input: si, σ(si)

Output: Pn, which is the distribution Pr(D(si)|σ(si)) repre-
sented as a trie.
D

(si)
0 = (0, . . . , 0)

P0[D
(si)
0 ] = 1.0 // Initialization: ∆

(si)
0 = {D(si)

0 }
for k = 1 to n do

Initialize Pk to be an empty trie
for all D

(si)
k−1 from Pk−1 do

for all s
(si)
k ∈ S

(si)
k such that σ

(si)
k (s

(si)
k ) > 0 do

D
(si)
k = D

(si)
k−1

if s
(si)
k 6= ∅ then
D

(si)
k (s

(si)
k ) += 1 // Apply action s

(si)
k

end if
if Pk[D

(si)
k ] does not exist yet then

Pk[D
(si)
k ] = 0.0

end if
Pk[D

(si)
k ] += Pk−1[D

(si)
k−1]× σ

(si)
k (s

(si)
k )

end for
end for

end for
return Pn

Each D
(si)
k is represented as a sequence of integers, so

Pk is a mapping from sequences of integers to real numbers.
We need a data structure to manipulate such probability dis-
tributions over configurations (sequences of integers) which
permits quick lookup, insertion and enumeration. An effi-
cient data structure for this purpose is a trie (Fredkin 1962).
Tries are commonly used in text processing to store strings
of characters, e.g. as dictionaries for spell checkers. Here
we use tries to store strings of integers rather than characters.
Both lookup and insertion complexity is linear in |ν(si)|. To
achieve efficient enumeration of all elements of a trie, we
store the elements in a list, in the order of their insertions.

Our algorithm for computing V i
si

(σ−i) consists of first
computing the projected strategies using (2), then fol-
lowing Algorithm 1, and finally doing the weighted sum
given in (3). The overall complexity is O(n|S| +
n|ν(si)|2|∆(si,i)(σ−i)|), where ∆(si,i)(σ−i) denotes the set
of configurations over ν(si) that have positive probability
of occurring under the mixed strategy (si, σ−i). Due to
space limits we omit the derivation of this complexity re-
sult. Since |∆(si,i)(σ−i)| ≤ |∆(si,i)| ≤ |∆(si)|, and |∆(si)|
is the number of payoff values stored in payoff function usi ,
this means that expected payoffs can be computed in polyno-
mial time with respect to the size of the AGG. Furthermore,
our algorithm is able to exploit strategies with small sup-
ports which lead to a small |∆(si,i)(σ−i)|. Since |∆(si)| is
bounded by (n−1+|ν(si)|)!

(n−1)!|ν(si)|! , this implies that if the in-degree
of the graph is bounded by a constant, then the complexity
of computing expected payoffs is O(n|S|+ nI+1).

Theorem 1. Given an AGG representation of a game, i’s
expected payoff V i

si
(σ−i) can be computed in time polyno-

mial in the size of the representation. If I, the in-degree of

the action graph, is bounded by a constant, V i
si

(σ−i) can be
computed in time polynomial in n.

AGG with Function Nodes
There are games with certain kinds of context-specific inde-
pendence structures that AGGs are not able to exploit.
Example 1. In the Coffee Shop Game there are n players;
each player is planning to open a new coffee shop in a down-
town area, but has to decide on the location. The downtown
area is represented by a r × c grid. Each player can choose
to open the shop at any of the B ≡ rc blocks, or decide not
to enter the market. Conditioned on player i choosing some
location s, her utility depends on the number of players that
chose the same block, the number of players that chose any
of the surrounding blocks, and the number of players that
chose any other location.

The normal form representation of this game has size
n|S|n = n(B + 1)n. Let us now represent the game
as an AGG. We observe that if agent i chooses an action
s corresponding to one of the B locations, then her payoff
is affected by the configuration over all B locations. Hence,
ν(s) would consist of B action nodes corresponding to the
B locations. The action graph has in-degree I = B. Since
the action sets completely overlap, the representation size
is O(|S||∆(s)|) = O(B (n−1+B)!

(n−1)!B! ). If we hold B constant,
this becomes O(BnB), which is exponentially more com-
pact than the normal form representation. If we instead hold
n constant, the size of the representation is O(Bn), which is
only slightly better than the normal form.

Intuitively, the AGG representation is only able to exploit
the anonymity structure in this game. However, this game’s
payoff function does have context-specific structure. Ob-
serve that us depends only on three quantities: the num-
ber of players that chose the same block, the surround-
ing blocks, and other locations. In other words, us can
be written as a function g of only 3 integers: us(D(s)) =
g(D(s),

∑
s′∈S′ D(s′),

∑
s′′∈S′′ D(s′′)) where S′ is the set

of actions that surrounds s and S′′ the set of actions corre-
sponding to the other locations. Because the AGG represen-
tation is not able to exploit this context-specific information,
utility values are duplicated in the representation.

We can find similar examples where us could be written
as a function of a small number of intermediate parameters.
One example is a “parity game” where us depends only on
whether

∑
s′∈ν(s) D(s′) is even or odd. Thus us would have

just two distinct values, but the AGG representation would
have to specify a value for every configuration D(s).

This kind of structure can be exploited within the AGG
framework by introducing function nodes to the action graph
G. Now G’s vertices consist of both the set of action nodes S
and the set of function nodes P . We require that no function
node p ∈ P can be in any player’s action set, i.e. S∩P = {}.
Each node in G can have action nodes and/or function nodes
as neighbors. For each p ∈ P , we introduce a function
fp : ∆(p) 7→ N, where D(p) ∈ ∆(p) denotes configurations
over p’s neighbors. The configurations D are extended over
the entire set of nodes, by defining D(p) ≡ fp(D(p)). In-
tuitively, D(p) are the intermediate parameters that players’
utilities depend on.



Figure 1: A 5× 6 Coffee Shop Game: Left: the AGG repre-
sentation without function nodes (looking at only the neigh-
borhood of the a node s). Right: after introducing two
function nodes, s now has only 3 incoming edges.

To ensure that the AGG is meaningful, the graph G re-
stricted to nodes in P is required to be a directed acyclic
graph (DAG). Furthermore it is required that every p ∈ P
has at least one neighbor (i.e. incoming edge). These con-
ditions ensure that D(s) for all s and D(p) for all p are
well-defined. To ensure that every p ∈ P is “useful”, we
also require that p has at least one out-going edge. As be-
fore, for each action node s we define a utility function
us : ∆(s) 7→ R. We call this extended representation
(N,S, P, ν, {fp}p∈P , u) an Action Graph Game with Func-
tion Nodes (AGGFN).

Representation Size
Given an AGGFN, we can construct an equivalent AGG
with the same players N and actions S and equivalent utility
functions, but represented without any function nodes. We
put an edge from s′ to s in the AGG if either there is an
edge from s′ to s in the AGGFN, or there is a path from s′
to s through a chain of function nodes. The number of util-
ities stored in an AGGFN is no greater than the number of
utilities in the equivalent AGG without function nodes. We
can show this by following similar arguments as before, es-
tablishing a many-to-one mapping from utilities in the AGG
representation to utilities in the AGGFN. On the other hand,
AGGFNs have to represent the functions fp, which can ei-
ther be implemented using elementary operations, or repre-
sented as mappings similar to us. We want to add function
nodes only when they represent meaningful intermediate pa-
rameters and hence reduce the number of incoming edges on
action nodes.

Consider our coffee shop example. For each action node
s corresponding to a location, we introduce function nodes
p′s and p′′s . Let ν(p′s) consist of actions surrounding s, and
ν(p′′s ) consist of actions for the other locations. Then we
modify ν(s) so that it has 3 nodes: ν(s) = {s, p′s, p′′s}, as
shown in Figure 1. For all function nodes p ∈ P , we define
fp(D(p)) =

∑
m∈ν(p) D(m). Now each D(s) is a configu-

ration over only 3 nodes. Since fp is a summation operator,
|∆(s)| is the number of compositions of n − 1 into 4 non-
negative integers, (n+2)!

(n−1)!3! = n(n + 1)(n + 2)/6 = O(n3).
We must therefore store O(Bn3) utility values.

Computing with AGGFNs
Our expected-payoff algorithm cannot be directly applied to
AGGFNs with arbitrary fp. First of all, projection of strate-

gies does not work directly, because a player j playing an
action sj 6∈ ν(s) could still affect D(s) via function nodes.
Furthermore, our DP algorithm for computing the probabil-
ities does not work because for an arbitrary function node
p ∈ ν(s), each player would not be guaranteed to affect
D(p) independently. Therefore in the worst case we need
to convert the AGGFN to an AGG without function nodes
in order to apply our algorithm. This means that we are not
always able to translate the extra compactness of AGGFNs
over AGGs into more efficient computation.
Definition 1. An AGGFN is contribution-independent (CI)
if
• For all p ∈ P , ν(p) ⊆ S, i.e. the neighbors of function

nodes are action nodes.
• There exists a commutative and associative operator ∗,

and for each node s ∈ S an integer ws, such that given an
action profile s, for all p ∈ P , D(p) = ∗i∈N :si∈ν(p) wsi

.

Note that this definition entails that D(p) can be written as
a function of D(p) by collecting terms: D(p) ≡ fp(D(p)) =
∗s∈ν(p)(∗D(s)

k=1 ws).
The coffee shop game is an example of a contribution-

independent AGGFN, with the summation operator serving
as ∗, and ws = 1 for all s. For the parity game mentioned
earlier, ∗ is instead addition mod 2. If we are modeling an
auction, and want D(p) to represent the amount of the win-
ning bid, we would let ws be the bid amount corresponding
to action s, and ∗ be the max operator.

For contribution-independent AGGFNs, it is the case that
for all function nodes p, each player’s strategy affects D(p)
independently. This fact allows us to adapt our algorithm
to efficiently compute the expected payoff V i

si
(σ−i). For

simplicity we present the algorithm for the case where we
have one operator ∗ for all p ∈ P , but our approach can be
directly applied to games with different operators associated
with different function nodes, and likewise with a different
set of ws for each operator.

We define the contribution of action s to node m ∈ S∪P ,
denoted Cs(m), as 1 if m = s, 0 if m ∈ S \ {s}, and
∗m′∈ν(m)(∗Cs(m′)

k=1 ws) if m ∈ P . Then it is easy to verify
that given an action profile s, D(s) =

∑n
j=1 Csj (s) for all

s ∈ S and D(p) = ∗n
j=1 Csj (p) for all p ∈ P .

Given that player i played si, we define the pro-
jected contribution of action s, denoted C

(si)
s , as the tuple

(Cs(m))m∈ν(si). Note that different actions may have iden-
tical projected contributions. Player j’s mixed strategy σj

induces a probability distribution over j’s projected contri-
butions, Pr(C(si)|σj) =

∑
sj :C

(si)
sj

=C(si)
σj(sj). Now we

can operate entirely using the probabilities on projected con-
tributions instead of the mixed strategy probabilities. This is
analogous to the projection of σj to σ

(si)
j in our algorithm

for AGGs without function nodes.
Algorithm 1 for computing the distribution Pr(D(si)|σ)

can be straightforwardly adopted to work with contribution-
independent AGGFNs: whenever we apply player k’s con-
tribution C

(si)
sk to D

(si)
k−1, the resulting configuration D

(si)
k

is computed componentwise as follows: D
(si)
k (m) =



C
(si)
sk (m) + D

(si)
k−1(m) if m ∈ S, and D

(si)
k (m) =

C
(si)
sk (m) ∗D

(si)
k−1(m) if m ∈ P . Following similar com-

plexity analysis, if an AGGFN is CI, expected payoffs can
be computed in polynomial time with respect to the repre-
sentation size. Applied to the coffee shop example, since
|∆(s)| = O(n3), our algorithm takes O(n|S| + n4) time,
which grows linearly in |S|.
Experiments
We implemented the AGG representation and our algorithm
for computing expected payoffs in C++. We ran several ex-
periments to compare the performance of our implementa-
tion against the (heavily optimized) GameTracer implemen-
tation (Blum, Shelton, & Koller 2002) which performs the
same computation for a normal form representation. We
used the Coffee Shop game (with randomly-chosen payoff
values) as a benchmark. We varied both the number of play-
ers and the number of actions.

First, we compared the AGGFNs’ representation size to
that of the normal form. The results confirmed our the-
oretical predictions that the AGGFN representation grows
polynomially with n while the normal form representation
grows exponentially with n. (The graph is omitted because
of space constraints.)

Second, we tested the performance of our dynamic pro-
gramming algorithm against GameTracer’s normal form
based algorithm for computing expected payoffs, on Cof-
fee Shop games of different sizes. For each game instance,
we generated 1000 random strategy profiles with full sup-
port, and measured the CPU (user) time spent computing
the expected payoffs under these strategy profiles. We fixed
the size of blocks at 5 × 5 and varied the number of play-
ers. Figure 2 shows plots of the results. For very small
games the normal form based algorithm is faster due to its
smaller bookkeeping overhead; as the number of players
grows larger, our AGGFN-based algorithm’s running time
grows polynomially, while the normal form based algorithm
scales exponentially. For more than five players, we were
not able to store the normal form representation in memory.

Next, we fixed the number of players at 4 and number
of columns at 5, and varied the number of rows. Our al-
gorithm’s running time grew roughly linearly in the number
of rows, while the normal form based algorithm grew like a
higher-order polynomial. This was consistent with our theo-
retical prediction that our algorithm take O(n|S|+ n4) time
for this class of games while normal-form based algorithms
take O(|S|n−1) time.

Last, we considered strategy profiles having partial sup-
port (though space prevents showing the figure). While en-
suring that each player’s support included at least one action,
we generated strategy profiles with each action included in
the support with probability 0.4. GameTracer took about
60% of its full-support running times to compute expected
payoffs in this domain, while our algorithm required about
20% of its full-support running times.

Conclusions
We presented a polynomial-time algorithm for computing
expected payoffs in action-graph games. For AGGs with
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Figure 2: Running times for payoff computation in the Cof-
fee Shop Game. Left: 5×5 grid with 3 to 16 players. Right:
4-player r × 5 grid with r varying from 3 to 10.

bounded in-degree, our algorithm achieves an exponen-
tial speed-up compared to normal-form based algorithms
and Bhat & Leyton-Brown’s algorithm (2004). We also
extended the AGG representation by introducing function
nodes, which allows us to compactly represent a wider range
of structured utility functions. We showed that if an AG-
GFN is contribution-independent, expected payoffs can be
computed in polynomial time.

In the full version of this paper we will also discuss speed-
ing up the computation of Nash and correlated equilibria.
We have combined our expected-payoff algorithm with Ga-
meTracer’s implementation of Govindan & Wilson’s algo-
rithm (2003) for computing Nash equilibria, and achieved
exponential speedup compared to the normal form. Also,
as a direct corollary of our Theorem 1 and Papadimitriou’s
result (2005), correlated equilibria can be computed in time
polynomial in the size of the AGG.
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