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Abstract

Representing and reasoning with games becomes difficult thiey involve large numbers of actions
and players, because the space requirement for utilitytibmescan grow unmanageably. Action-Graph
Games (AGGs) are a fully-expressive game representatatncém compactly express utility functions
with structure such as context-specific independence,yanioy and additivity. We show that AGGs can
be used to compactly represent all games that are compantrepeesented as graphical games, symmet-
ric games, anonymous games, congestion games, and pak/getnes, as well as games that require
exponential space under all of these existing representatiWe give a polynomial-time algorithm for
computing a player’s expected utility under an arbitrarxedistrategy profile, and show how to use this
algorithm to achieve exponential speedups of existing atstHfor computing sample Nash equilibria.
We present results of experiments showing that using AG&dsl¢o a dramatic increase in the size of
games accessible to computational analysis.

Keywords: game representations, graphical models, large games,utatiomal techniques, Nash
equilibria.

JEL classification codes:C63—Computational Techniques, C72—Noncooperative Games

1 Introduction

Simultaneous-action games have received considerallg sthich is reasonable as these games
are in a sense the most fundame#stilost of the game theory literature presumes that simultaseo
action games will be represented in normal form. This is [@olatic because in many domains
of interest the number of players and/or the number of astjmar player is large. In the nor-
mal form representation, the game’s payoff function isexdioas a matrix with one entry for
each player’s payoff under each combination of all playactions. As a result, the size of the
representation grows exponentially with the number of @iay

Fortunately, most large games of practical interest haghlfistructured payoff functions,
and thus it is possible to represent them compactly. Inelitj this helps to explain why people
are able to reason about these games in the first place: westena® the payoffs in terms of
simple relationships rather than in terms of enormous lpdkbles. One thread of recent work
in the literature has explored game representations tkadtze to succinctly describe games of
interest. In some sense, nearly every game form besidesthmahform itself can be seen as such
a compact representation. For example, the extensive filmmssgames with temporal structure
to be encoded in exponentially less space than the normal for what follows, however, we
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concentrate on game representations that are compact eveinfultaneous-move games of
perfect information.

Perhaps the most influential class of compact game repegisTd is that which exploits
strict independencies between players’ utility functioffis class includes graphical games
[Kearnset al,, 2001; Kearns, 2007], multi-agent influence diagrams [&ofl Milch, 2003], and
game nets [LaMura, 2000]; we focus on the first of these. Gemsa graph in which nodes
correspond to agents and an edge from one node to anotheseeps the proposition that the
first agent is able to affect the second agent’s payoff. Ifewede in the graph has a small in-
degree—thatis, if each agent’s payoff depends only on ttierecof a small number of others—
then the graphical game representation is compact, by whéimean that it is exponentially
smaller than its induced normal form. Of course, there ayeraimber of ways of representing
games compactly. For example, games of interest could lignassshort ID numbers. What
makes graphical games important is the fact that compuiatiuestions about these games can
be answered by algorithms whose running time depends ornizth@fthe representation rather
than the size of the induced normal form. (Note that this prigpdoes not hold for the naive
ID number scheme.) To state one fundamental property [Dalskaet al., 2006a], it is possible
to compute an agent’s expected utility under an arbitramechistrategy profile in time polyno-
mial in the size of the graphical game representation. Thopgrty implies that a variety of
algorithms for computing game-theoretic quantities oéiiast, such as sample Nash [Govindan
& Wilson, 2003; van der Laast al, 1987] and correlated equilibrium, can be made exponen-
tially faster for graphical games without introducing amange in the algorithms’ behavior or
output [Blumet al,, 2006; Papadimitriou & Roughgarden, 2008]. Furthermoraplgical games
are also computationally well-behaved in other ways; effitialgorithms exist for computing
other quantities of interest for certain subclasses ofetlgasnes such as sample Nash equilibria
[Elkind et al, 2006] or Nash equilibria subject to a fairness criteriofkid et al., 2007] on
path graphs, pure Nash equilibrium on bounded-treewidiplys [Daskalakis & Papadimitriou,
2006; Gottlobet al,, 2005],e-Nash equilibrium [Kearnst al,, 2001; Vickrey & Koller, 2002],
and evolutionary stable strategies [Kearns & Suri, 2006].

A drawback of the graphical games representation is thatytleelps when there exist agents
who neveraffect some other agents’ utilities. Unfortunately, mamyngs of interest lack any
structure of this kind. For example, nontrivial symmetranges are cliques when represented
as graphical games. Another useful form of structure noegaly captured by graphical games
is dubbedanonymity it holds when each agent’s utility depends only on the nunalb@agents
who took each action, rather than on these agents’ idesititiBecently, researchers such as
Papadimitriou and Roughgarden [2008], Kalai [2005], Dé#skia and Papadimitriou [2007],
Brandtet al. [2010] and Ryaret al. [2010] have explored the representational, computational
and strategic benefits that can be derived from symmetry aoyenity assumptions.

A weaker form of utility independence can usefully be consllivith symmetry and anonymity.
Specifically, utility functions exhibitontext-specifimdependencies when the question of whether
two agents are able to affect each other’s utilities dependse actions both agents choose. Con-
gestion games [Rosenthal, 1973] are a prominent game esyati®n that can express context-
specific payoff independencies, anonymiyd symmetry. This representation has many ad-
vantages. First and most importantly, many realistic axtBons—even involving very large
numbers of players and actions—have compact represamgacongestion games (see, e.g.,
[Roughgarden & Tardos, 2002]). Second, congestion ganmesdttiactive theoretical properties.

3Note that our definition of anonymity presumes that it malasse to speak about two different agents having at
least some of the same action choices. There are variousofiaghieving this formally; for now, one can simply assume
that anonymous games are also symmetric.



Most notably, they always have pure-strategy equilibral endeed always admit an exact po-
tential function [Monderer & Shapley, 1996]. As a consequesimple best-response dynamics
are guaranteed to converge to a pure-strategy equilibfimally, congestion games have attrac-
tive computational properties. For example, correlatadldgium can be efficiently computed
for congestion games [Papadimitriou, 2005; Papadimit&oRoughgarden, 2008], and pure-
strategy Nash equilibrium can be efficiently computed fatrieted subclasses of congestion
games (see, e.g., [leorgal., 2005]).

Unfortunately, congestion games too have a catch. Unlikplycal games, congestion
games are not a universal game representation: not evenahéorm game can be encoded as a
congestion game. Indeed, this problem should be obvioustie fact that congestion games al-
ways have pure-strategy equilibria. Congestion gamesneethat agents’ utility functions must
be expressible assumof arbitrary functions of the numbers of agents who chosk eéa set of
resources, where each action is interpreted as the choareeadr more resources. This linearity
assumption is restrictive. Thus, while congestion gamestitote a useful model for reasoning
about certain game-theoretic domains, they cannot setbhedimsis for a set of general tools for
representing and reasoning about games.

Action-graph games (AGGSs) are a general game represanthtid can be understood as
offering the advantages of—and, indeed, unifying—botipgieal games and congestion games.
Like graphical games, AGGs can represent any game, and famiajame-theoretic computa-
tions can be performed efficiently when the AGG represesmias compact. Hence, AGGs offer
a general representational framework for game-theoretigputation. Like congestion games,
AGGs compactly represent context-specific independemoayanity, and additivity, though un-
like congestion games they do not require any of these. IFinaGGs can also compactly
represent many games that are not compact as either grbgéinas or as congestion games.

We begin this paper in Section 2 by defining action-graph gamneluding the basic repre-
sentation and extensions with function nodes and additiie/(functions, and characterizing
their representation sizes. In Section 3 we provide seveoaé examples of structured games
which can be compactly represented as AGGs. Then we turn fiepnesentational to compu-
tational issues. In Section 4 we present a dynamic progragualgorithm for computing an
agent’s expected utility under an arbitrary mixed-stratepfile, prove its complexity, and ex-
plore several elaborations. In Section 5 we show that (asadlary of the polynomial complexity
of our expected utility algorithm) the problem of finding aNash equilibrium of an AGG is in
PPAD: a positive result, as AGGs can be exponentially sm#ien normal-form games. We
also show how to use our dynamic programming algorithm tedpg existing methods for
computing sample-Nash and-correlated equilibria. Finally, in Section 6 we presemt tasults
of extensive experiments with some of these algorithms,ahestnating that AGGs can feasibly
be used to reason about interesting games that were indsled¢ssany previous techniques. The
largest game that we tackled in our experiments had 20 agewatd 3 actions per agent; we
found its Nash equilibrium in 14.3 minutes. A normal form mregentation of this game would
have involved.4 x 10'3* numbers, requiring an outragedus x 1026 gigabytes even to store.

Finally, let us describe the relationship between this pape past work, mostly our own,
on AGGs. Leyton-Brown and Tennenholtz [2003] introducezhleeffect games, which can be
understood as symmetric AGGs in which utility functions aequired to satisfy a particular
linearity property. Bhat and Leyton-Brown [2004] introcuatthe basic AGG representation and
some of the computational ideas for reasoning with them.dymamic programming algorithm
was first proposed in Jiang and Leyton-Brown [2006], as wasdha of function nodes. The
current paper substantially elaborates upon and extemdefitesentations and methods from
these two papers. Other new material includes the additiuetsre model and the encoding of



congestion games, several of the examples, our compugatisethods fork-symmetric games
and for additive structure, and our speedup of the simpkeiadivision algorithm. Furthermore,
all experiments in this paper (Section 6) are new. Going bdybe work described here, in Jiang
and Leyton-Brown [2007] we gave a message-passing algofith computing pure-strategy
equilibria of symmetric AGGs, in Thompsaat al. [2007] we explored the use of AGGs to
model network congestion problems that cannot be captwedragestion games, in Thompson
and Leyton-Brown [2009] we used AGGs to compute the NasHiegaiof perfect-information
advertising auction problems, and in Jiaggal. [2009] and Jiang and Leyton-Brown [2010]
we extend our AGG framework to represent dynamic games agddtan games, respectively.
Daskalakist al. [2009] (a separate group of researchers) recently corexidee computation of
e-Nash equilibrium of AGGs, providing a fully polynomial terapproximation scheme (FPTAS)
for one family of AGGs and proving computational hardnessilts for other families.

2 Action Graph Games

This section has three parts, each of which defines a diffék&G variant. In Section 2.1
we define the basic AGG representation (which we dub A}Gharacterize its representation
size, and show how it can be used to represent normal-foraphdgral, and symmetric games.
In Section 2.2 we introduce the idea foinction nodesshow how AGGs with function nodes
(AGG-FNs) can capture additional structure in several g@largames, and show how to rep-
resent anonymous games as AGG-FNs. In Section 2.3 we irteodGG-FNs with additive
structure (AGG-FNA), which compactly represent addititreicture in the utility functions of
AGGs, and show how congestion games can be succinctly wageAGG-FNAs.

2.1 Basic Action Graph Games

We begin with an intuitive description of basic action-gragames. Consider a directed graph
with nodes4 and edge#, and a set of agenf§ = {1,...,n}. Identical tokens are given to each
agenti € N. To play the game, each ageérgimultaneously places her token on a nade A;,
whereA; C A. Each node in the graph thus corresponds to an action chwtéstavailable to
one or more of the agents; this is where action-graph gantebgjename. Each agent’s utility
is calculated according to an arbitrary function of the nslde chose and theumbersof tokens
placed on the nodes that neighbor that chosen node in tha.gveg will argue below that any
simultaneous-move game can be represented in this wayhahddtion-graph games are often
much more compact than games represented in other ways.

We now turn to a formal definition of basic action-graph gantet N = {1,...,n} be the
set of agents. Central to our model is tetion graph

Definition 2.1 (Action graph) Anaction graphiG = (A, F) is a directed graph where:

e Aisthe set of nodes. We call each nede A anaction and.A theset of distinct actions
For each ageni € N, let A; be the set of actions available towith A = |,y A: A We
denote byi; € A; one of agent’s actions. Araction profile(or pure strategy profileis a
tuplea = (a1, . .., a,). Denote byA the set of action profiles. Thet =[], A; where
1 is the Cartesian product.

“Different agents’ action setd;, A; may (partially or completely) overlap. The implicationstbfs will become
clear once we define the utility functions.



e Fis a set of directed edges, where self edges are allowed. Y& $aa neighborof « if
there is an edge from’ to o, i.e., (¢/, ) € E. Let theneighborhoodf «, denoted/(«),
be the set of neighbors af i.e.,v(a) = {o’ € A|(a/,a) € E}.

Given an action graph and a set of agents, we can further deioefiguration which is a
feasible arrangement of agents across nodes in an actiph.gra

Definition 2.2 (Configuration) Given an action grapli.4, E') and a set of action profiled, a
configuratiorc is a tuple of|.A| non-negative integers:(«)).c .4, Wherec(a) is interpreted as
the number of agents who chose actiore A, and where there exists some= A that would
give rise toc. Denote the set of all configurations &5 LetC : A — C be the function that
maps from an action profile to the corresponding configuratian Formally, ifc = C(a) then
cla)={i € N :a; =a}|forall a € A.

We can also restrict a configuration to a given node’s neigfnad.

Definition 2.3 (Configuration over a neighborhood) Given a configuratior € C and a node
a € A, let theconfiguration over the neighborhooftle, denoted:(*), be the restriction of to
v(a), i.e.,c® = (c(a!))wen(a)- Similarly, letC® denote the set of configurations ove)

in which at least one player plays® LetC(®) : A — C(®) be the function which maps from an
action profile to the corresponding configuration ovéry).

Now we can state the formal definition of basic action-gragmes as follows.

Definition 2.4 (Basic action-graph game)A basic action-graph game (AG@H-is a tuple(N,
A, G, u) where

e N is the set of agents;
o A= TJ,cn Aiis the set of action profiles;
e G = (A, E)is an action graph, wherel = | J,. v 4; is the set of distinct actions;

e u is a tuple (u®)qc4, Where eachu® : C(® — R is theutility function for action c.
Semantically;®(c(®)) is the utility of an agent who choge when the configuration over
v(a)iscl®,

For notational convenience, we defingy, ¢()) = u*(c(®)) andu;(a) = u(a;, C(*)(a)).
We also definel_; = H#i A; as the set of action profiles of agents other thamd denote an
elementofd_; bya_;.

2.1.1 Example: Ice Cream Vendors

The following example helps to illustrate the elements & &GG+4) representation, and also
exhibits context-specificity and anonymity in utility fuimns. This example would not be com-
pact under the existing game representations discusséx imtroduction. It was inspired by

Hotelling [1929], and elaborates an example used in Le{@mwn and Tennenholtz [2003].

5f action « is in multiple players’ action sets (say playérs), and these action sets do not completely overlap, then it
is possible that the set of configurations given thalyeda (denotedC'(s:%)) is different from the set of configurations
given thatj playeda. C(®) is the union of these sets of configurations.



Figure 1: AGG# representation of the Ice Cream Vendor game.

Example 2.5 (Ice Cream Vendor game)Consider a setting in which vendors sell ice cream
or strawberries, and must choose one of four locations al@bgach. There are three kinds of
vendors:n; ice cream vendors;s strawberry vendors, andy, vendors who can sell both ice
cream and strawberry, but only on the west side. Ice crearaviierry) vendors are negatively
affected by the presence of other ice cream (strawberry)lmenin the same or neighboring
locations, and are simultaneously positively affectedhgyfdresence of nearby strawberry (ice
cream) vendors.

The AGGH representation of this game is illustrated in Figure 1. Aways, nodes represent
actions and directed edges represent membership in a noéafborhood. The dotted boxes
represent the action sets for each group of players; for gdanthe ice cream vendors have
action setA;. Note that this game exhibits context-specific indeperslaithout any strict
independence, and that the graph structure is independent o

2.1.2 Size of an AGGJ Representation
Intuitively, AGG-Js capture two types of structure in games:

1. Shared actions capture the gama®nymitystructure: agent’s utility depends only on
her actiona; and the configuration. Thus, agentares about theaumberof players that
play each action, but not the identities of those players.

2. The (lack of) edges between nodes in the action graph ssgamontext-specific indepen-
denciesof utilities of the game: for ali € N, if i chose actionv € A, theni’s utility
depends only on the configuration over the neighborhoad &f other words, the config-
uration over actions not in(«) does not affect’s utility.

We have claimed informally that action graph games provideg of representing games
compactly. But what exactly is the size of an AG@Gepresentation, and how does it grow with
the number of agents? In this subsection we give a bound on the size of an AlG&ad show
that asymptotically it is never worse than the size of thevedent normal form.

From Definition 2.4 we observe that to completely specify &GA) we need to specify (1)
the set of agents, (2) each agent’s set of actions, (3) thenagptaph, and (4) the utility functions.
The first three can easily be compactly represented:

1. The set of agentdy = {1,...,n} can be specified by the integer

2. The set of actionsl can be specified by the integlet|. Each agent’s action set; C A
can be specified i0(|.A|) space.



3. The action grapli = (A, E) can be straightforwardly represented as neighbor lists: fo
each nodex € A we specify its list of neighbors(«) C A. The space required is
> aca lv(@)], which is bounded byA|Z, whereZ = max, [v(a)l, i.€., the maximum
in-degree of.

We observe that whereas the first three components of an AG%:-A, G, u) can always
be represented in space polynomiahimnd|4;|, the size of the utility functions is worst-case
exponential. So the size of the utility functions deterrsimdnether an AGG}can be tractably
represented. Indeed, for the rest of the paper we will reféné number of payoff values stored
as the representation size of the A@GThe following proposition gives an upper bound on the
number of payoff values stored.

Proposition 2.6 Given an AGG}, the number of payoff values stored by its utility functi@ns
at most|A|%. If Z is bounded by a constant asgrows, the number of payoff values is

O(]A|n?), i.e. polynomial with respect to.

Proof. For each utility function.® : C(®) — R, we need to specify a utility value for each
distinct configuration(®) € C(®, The set of configuration§(®) can be derived from the
action graph, and can be sorted in lexicographical ordeusTWwe can just specify a list of
|C(*)] utility values that correspond to the (ordered) set of camfijons? In general there
is no closed form expression faf(®)|, the number of distinct configurations ove). In-
stead, we consider the operation of extending all agent®&irasets viavi : A; — A. The
number of configurations over() under the new action sets is an upper bound@’|.
This is the number of (ordered) combinatorial compositioing — 1 (since one player has al-

: : : H a—1+|v n—14+|v(a)|)!
ready chosen) into |v/()|+ 1 nonnegative integers, which (& lu(L)(la)‘) — %

Then the total space required for the utilities is boundethfabove by{A|%. IfZis
bounded by a constant aggrows, this grows likeD(|.A|n*). m

For each AGG}, there exists a uniguaduced normal formmepresentation with the same set
of players andA;| actions for eacl; its utility function is a matrix that specifies each playesr
payoff for each possible action profilec A. This implies a space complexity f[]}"_, | A;|.
When A; > 2 for all 7, the size of the induced normal form representation groyp®eentially
with respect ton. On the other hand, we observe that the number of payoff satered in an
AGG-) representation is always less than or equal to the numbexyafffvalues in the induced
normal form representation. Of course, the A@Gepresentation has the extra overhead of
representing the action graph, which is bounde¢l&iZ. But this overhead is dominated by the
size of the induced normal fornn,]'[j |A;]. Thus, an AGGH’'s asymptotic space complexity is
never worse than that of its induced normal form game.

Itis also possible to describe a reverse transformatidretizodes any arbitrary game in nor-
mal form as an AGG} Specifically, a unique nodg must be created for each action available
to each agent ThusVa € A, c(a) € {0,1},andvi, ) 4. c(a) mustequal. The configura-
tion simply indicates each agent’s action choice, and esgg®no anonymity or context-specific
independence structure.

This representation is no more or less compact than the ndoma. More precisely, the
number of distinct configurations ovefa; ) is the number of action profiles of the other players,

6This is the most compact way of representing the utility fiors, but does not provide easy random access to the
utilities. Therefore, when we want to do computation usig3@s, we may convert each utility functiar* to a data
structure that efficiently implements a mapping from segasrof integers to (floating-point) numbers, (e.g. trieshha
tables or Red-Black trees), with space complexifZ|C(®)|).



Figure 2: AGG#H representation of a 3-player, 3-action graphical game.

whichis[];_, [4;]. Sincei has|A;| actions,[[; |4;| payoff values are needed to represént
payoffs. So in totah Hj |A,| payoff values are stored, exactly the number in the nornai fo

One might ask whether AG®@s can compactly represent known classes of structured games
Consider the graphical game representation [Keatred, 2001]. In a graphical game nodes
denote agents, and there is an (undirected) edge conneatigageni to each other agent
whose actions can affe¢s utility. Each agent then has a payoff matrix representiisglocal
game with neighboring agents. Graphical games can be mpessas AGGhs by replacing
each node in the graphical game by a distinct cluster of nodgsrepresenting the action set
of agenti. If the graphical game has an edge frono j, edges must be created in the AGG-
so thatva; € A;,Va; € Aj, a; € v(a;). The resulting AGG)s are as compact as the original
graphical games. Figure 2 shows the A@@epresentation of a graphical game having three
nodes and two edges (i.e., player 1 and player 3 do not diraffdct each others’ payoffs).

Another important class of structured games are symmediiceg. A symmetric game is
one in which all players are identical and indistinguislealdymmetric games exhibit anonymity
structure: the utility of a player who chose a certain acti@pends only on the numbers of
players who played each of the actions. An arbitrary symimegaime can be encoded as an
AGG-) without an increase in asymptotic size. Specifically,det= A for all i € N. The
resulting action graph is a clique, i#(a) = Aforall a € A.

2.2 AGGs with Function Nodes

There are games with certain kinds of context-specific irddpnce structures that AGi5-are
not able to exploit (see, e.g., Example 2.7 below). In thigtise we extend the AG®-repre-
sentation by introducinfunction nodesallowing us to exploit a much wider variety of utility
structures. Of course, as always, compact representatinot interesting as an end in itself. In
Section 4.2 we identify broad subclasses of AGG-FNs—indgeld enough to encompass all
AGG-FN examples presented in this paper—which are amenablfcient computation.

2.2.1 Examples: Coffee Shops and Parity

Example 2.7 (Coffee Shop gamefonsider a game involving players; each player plans to
open a coffee shop in a downtown area, represented by a: grid. Each player can choose
to open a shop located within any of tli¢ = rk blocks or decide not to enter the market.
Conditioned on playei choosing some locatiam, her utility depends on the numbers of players
who chose (i) the same block; (ii) any of the surrounding képand (iii) any other location.

The normal form representation of this game has sizé|™ = n(B + 1)". Since there
are no strict independencies in the utility function, thgnagtotic size of the graphical game



representation is the same. Let us now represent the game®&3@). We observe that if agent

i chooses an actiom corresponding to one of the locations, then her payoff is affected by the
configuration over alB locations. Hencey(«) must consist o3 action nodes corresponding to
the B locations, and so the action graph has in-de@ree B. Since the action sets completely

overlap, the representation sizedg|.A||C(*)|) = © (3%). If we hold B constant, this

become® (Bn?), which is exponentially more compact than the normal forahttwe graphical
game representation. If we instead haldconstant, the size of the representatio®isB"),
which is only slightly better than the normal form and gragathpame representations.

Intuitively, the AGGY representation is able to exploit anonymity structure iis trame.
However, this game’s payoff function also has context-gjgestructure that the AG@-does not
capture. Observe that* depends only on three quantities: the number of players \wbseecthe
same block, the number of players who chose an adjacent,tdadkhe number of players who
chose another location. In other words, can be written as a functianpof only three integers:
u () = g(e(@), X wea (@), 3 prean c(a”)) where A is the set of actions surrounding
« and.A” the set of actions corresponding to other locations. The AG&presentation is not
able to exploit this context-specific information, and splitates some utility values.

There exist many similar examples in which the utility fuoos u® can be expressed as
functions of a small number of intermediate parameterseer give one more.

Example 2.8 (Parity game) In a “parity game”, eachu® depends only on whether the number
of agents at neighboring nodes is even or odd, as follows:

. , o
uo Lot 3 ena (@) . mod 2 = 0;
0 otherwise.

Observe that in the Parity gamé can take just two distinct values; however, the AG@epre-
sentation must specify a value for every configuration.

2.2.2 Definition of AGG-FNs

Structure such as that in Examples 2.7 and 2.8 can be exploitein the AGG framework by
introducingfunction nodeso the action graply; intuitively, we use them to describe intermedi-
ate parameters upon which players’ utilities depend. Mtswertices consist of both the set of
action nodesA and the set of function nodés i.e. G = (AUP, E). We require that no function
nodep € P can be in any player’s action sett N P = {}. Thus, the total number of nodes in
G is |A| + |P|. Each node irG can have action nodes and/or function nodes as neighbors. We
associate a functiofi” : C(?) — R with eachp € P, wherec?) € C?) denotes configurations
overp’s neighbors. The configuratiorsare extended to include the function nodes by the def-
inition c(p) = f?(cP)). If p € P has no neighborsf? is a constant function. To ensure that
the AGG is meaningful, the graph restricted to nodes i is required to be a directed acyclic
graph (DAG). This condition ensures that for allandp, ¢(«) andc(p) are well defined. To
ensure that every € P is “useful”, we also require that has at least one outgoing edge. As
before, for each action nodewe define a utility function.® : C(®) — R. We call this extended
representation an Action Graph Game with Function NodesGA®), and define it formally as
follows.

Definition 2.9 (AGG-FN) An Action Graph Game with Function Nodes (AGG-FN) is a tuple
(Nv Aa Pa Ga f; U), where:

e N isthe set of agents;



o A= J,cn Aiis the set of action profiles;
P is a finite set of function nodes;

G = (AUP, E) is an action graph, whergl = | J, ; A; is the set of distinct actions. We
require that the restriction ofs to the node$P is acyclic and that for every € P there
exists ann € AU P such that(p,m) € E;,

fis atuple(f?),ep, where eachf? : C») — R is an arbitrary mapping from neighbors
of p to real numbers;

e uis atuple(u®),ca, where eachi® : C(@) — R is theutility function for actiona.

Given an AGG-FN, we can construct an equivalent AG@ith the same player®& and
actions. A and equivalent utility functions, but without any functiomdes. We call this the
induced AGG) of the AGG-FN. There is an edge fromi to « in the induced AGG} either
if there is an edge from’ to « in the AGG-FN, or if there is a path from’ to « through
a chain consisting entirely of function nodes. From the dkidim of AGG-FNs, the utility of
playing actionx is uniquely determined by the configuratigft), which is uniquely determined
by the configuration over the actions that are neighborsiofthe induced AGGA. As a result,
the utility tables of the induced AG@-can be filled in unambiguously. We observe that the
number of utility values stored in an AGG-FN is no greatenttiee number of utility values in
the induced AGGA. On the other hand, AGG-FNs have to represent the functférfer each
p € P. In the worst case, these functions can be represented &sitex@@ppings similar to
the utility functionsu®. However, it is often possible to define these functionslaigieally by
combining elementary operations, as we do in most of the pleswiven in this paper. In this
case the functions’ representations require a negligitleuant of space.

2.2.3 Representation Size

What is the size of an AGG-FNV, A, P, G, f,u)? The following proposition gives a sufficient
condition for the representation size to be polynomial.eHee speak about@dassof AGG-FNs
because our statement is about the asymptotic behavioreafefiresentation size. This is in
contrast to Proposition 2.6, where we gave an exact bounkeosize of an individual AGG-

Proposition 2.10 A class of AGG-FNSs has representation size bounded by aduarpmlynomial
in n, |.A| and|P] if the following conditions hold:

1. for all function node® € P, the size ofp’s range |R(f?)| is bounded by a function
polynomial inn, |.A| and|P|; and

2. max,,c aup ¥(m) (the maximum in-degree in the action graph) is bounded bynstemt.

Proof. Given an AGG-FN(N, A, P, G, f,u), it is straightforward to check that all compo-
nents except and f are polynomial im, |.A| and|P|.

First, consider an action node € A. Recall that the size of the utility functiom®
is C(@), Partitionv(a), the set ofa’s neighbors, inta/4(a) = v(a) N A andvp(a) =
v(«) NP (neighboring action nodes and function nodes respecjivBince for each action
o € vy(a), c(’) € {0,...,n}, and for eachy’ € vp(a), c(p) € R(f?), thenC(®) <
(n+ 1)la@IT] ) IR(f7)]. This is polynomial because all action node in-degrees are
bounded by a constant.

Now consider a function nodec P. Without loss of generality, assume that its function
fPisrepresented explicitly as a mapping. (Any other reprisdiem of f” can be transformed
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into this explicit representation.) The representatiae sif f? is thenC(?). Using the same
reasoning as above, we hav&”) < (n+ 1)AWIT] _  IR(f?)], which is polynomial
since all function node in-degrees are bounded by a constant

When the functiong® do not have to be represented explicitly, we can drop theireaent
on the in-degree of function nodes.

Corollary 2.11 A class of AGG-FNs has representation size bounded by aidmrmblynomial
in n, |.A| and|P] if the following conditions hold:

1. forall function nodegp € P, the functionf? has a representation whose size is polynomial
inn, |Al and|P;

2. for each function nodg € P that is a neighbor of some action node the size of’s
range|R(f?)| is bounded by a function polynomialin |.A| and|P|; and

3. max,e 4 v(a) (the maximum in-degree among action nodes) is bounded bysiart.

A very useful type of function node is ttsgmple aggregataor

Definition 2.12 (Simple aggregator)A function node < P is asimple aggregataf each of its

neighbors/(p) are action nodes ang? is the summation functiory?(c(P)) = 2 mev(p) €(m).

Simple aggregator function nodes take the value of the tataiber of players who chose
any of the node’s neighbors. Since these functions can bafigokin constant space, and
sinceR(f?) = {0,...,n} for all p, Corollary 2.11 applies. That is, the representation sizes
of AGG-FNs whose function nodes are all simple aggregat@galynomial whenever the in-
degrees of action nodes are bounded by a constant. In faiy @wertain assumptions we can
prove an even tighter bound on the representation sizepgmas to Proposition 2.6 for AG@s.
Intuitively, this works because both configurations on@ttiodes and configurations on simple
aggregators count the numbers of players who behave inrcerdgys.

Proposition 2.13 Consider a class of AGG-FNs whose function nodes are alllsimggrega-
tors. For eachm € AU P, define the function

m m € A;
Blm) :{ v(m) otherwise.

Intuitively, 5(m) is the set of nodes whose counts are aggregated by modgfor eacha € A
and for eachm,m’ € v(a), B(m) N B(m') = {} unlessm = m’ (i.e., no action node affects
« in more than one way), then the AGG-FNs’ representatiorssize bounded by4| (”‘;“I)
whereZ = max,e 4 V()| is the maximum in-degree of action nodes.

Proof. Consider the utility function:® for an arbitrary actiorv. Each neighbom € v(«)
is either an action or a simple aggregator. Observe thatfigeoationc(®) € C(®) is a tuple
of integers specifying the numbers of players choosing eatibn in the sei(m) for each
m € v(a). As in the proof of Proposition 2.6, we extend each playexto$ actions td.A,
making the game symmetric. This weakly increases the nupfleemfigurations. Since the
setsf3(m) are non-overlapping, the number of configurations posgiltlee extended action
space is equal to the number of (ordered) combinatorial sitipns ofn — 1 into |v(«)| +1
nonnegative integers, which (§“1;L”)(‘“)‘). This includes one bin for each action or simple
aggregator inv(«), plus one bin for agents that take an action that is neithes(dr) nor

in the neighborhood of any simple aggregatoria). Then the total space required for
representing: is bounded by.A|("2**) whereZ = max,c4 [v()|. B
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Figure 3: A5 x 6 Coffee Shop game: Left: the AGGrepresentation without function nodes
(looking at only the neighborhood af). Middle: we introduce two function nodeg, (bottom)
andp” (top). Right:a now has only 3 neighbors.

Consider the Coffee Shop game from Example 2.7. For eaabractidex corresponding to
a location, we introduce two simple aggregator functionesgpl, andp’.. Letv(p,) be the set
of actions surrounding, andv(p’) be the set of actions corresponding to other locations. Then
we setv(a) = {a,pl,,p”}, as shown in Figure 3. Now eaef*) is a configuration over only
three nodes. Since eagli is a simple aggregator, Corollary 2.11 applies and the dizbi®
AGG-FN is polynomial inn and.A. In fact since the game is symmetric and tg's as defined
in Proposition 2.13 are non-overlapping, we can calcuteekact value ofiC'(*)| as the number
of compositions of: — 1 into four nonnegative integeré% =n(n+1)(n+2)/6 = O(n?).
We must therefore stoBn(n+1)(n+2)/6 = O(Bn?) utility values. This is significantly more
compact than the AG@-representation, which has a representation siz@(ﬁ%).

We can represent the parity game from Example 2.8 in a simiégr For each action we
create a function node,, and letv(p,) = v(«). We then modifyv(«) so that it has only one
memberp, . For each function nodewe definef” asf?(c”) = 3, ¢(@) mod 2. Since
R(fP) = {0,1}, Corollary 2.11 applies. In fact, each utility function juseeds to store two
values, and so the representation siz@(s4|) plus the size of the action graph.

2.3 AGG-FNs with Additive Structure

So far we have assumed that the utility functiafis: C(®) — R are represented explicitly, i.e.,
by specifying the payoffs for all®) ¢ C(®). This is not the only way to represent a mapping; the
utility functions could be defined as analytical functiodecision trees, logic programs, circuits,
or even arbitrary algorithms. These alternative reprediams might be more natural for humans
to specify, and in many cases are more compact than the ixplicesentation. However, this
extra compactness does not always allow us to reason maeeeffy with the games. In this
section, we look at utility functions withdditive structure These functions can be represented
compactly and do allow more efficient computation.

2.3.1 Definition of AGG-FNs with Additive Structure

We say that a multivariate function hadditive structuref it can be written as a (weighted) sum
of functions of subsets of the variables. This form is mormpact because we only need to
represent the summands, which have lower dimensionabty tiie entire function.

We extend the AGG-FN representation by allowirfyto be represented as a weighted sum
of the configuration of the neighbors af’

“Such a utility function could also be represented usingdstethfunction nodes representing summation. However,
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Definition 2.14 A utility functionu® of an AGG-FN isadditiveif for all m € v(«) there exist
Am € R, such that
u(c¥) = Z Amec(m). (2.1)

mev(a)

Such an additive utility function can be represented as dpéet(\,,) e, (o). This is a very
versatile representation of additivity, because the rn®gh of o« can be function nodes. Thus
additive utility functions can represent weighted sumsrbiteary functions of configurations
over action nodes. We now formally define an AGG-FN repregent where some of the utility
functions are additive.

Definition 2.15 AnAGG-FN with additive structure (AGG-FNA} atuple(N, A, P, G, f, Ay,
A,u) whereN, A, P, G, [ are as defined in Definition 2.9, and

o A, C Aisthe set of actions whose utility functions are additive;

o A= (A")q,ca,, Where each\*+ = ()\,‘,X,ﬁ)m@(a) is the tuple of coefficients represent-
ing the additive utility functiom+;

o u = (u%)qeca\4,, Where eachu® is as defined in Definition 2.9. These are the non-
additive utility functions of the game, which are represeingxplicitly.

2.3.2 Representation Size

We only needv(a)| numbers to represent the coefficients of an additive utflityction u<,
whereas the explicit representation requit€§*)| numbers. Of course we also need to take
into account the sizes of the neighboring function noges v («) and their corresponding
functions f?, which represent the summands of the additive functionhE& either has a
simple description requiring negligible space, or is repreed explicitly as a mapping. In the
latter case its size can be analyzed the same way as utifitifuns on action nodes. That is,
when the neighbors gf are all actions then Proposition 2.6 applies; otherwisalibeussion in
Section 2.2.3 applies.

2.3.3 Representing Congestion Games as AGG-FNAs

A congestion game is a tupleV, M, (A;)ien, (Kjk)jem k<n), WhereN = {1,...,n} is the
set of playersM = {1,...,m} is a set of facilities (or resourcesy; is playeri's set of actions;
each actioru; € A; is a subset of the facilitiess; C M. Ky, is the cost on facilityj when

k players have chosen actions that include faciityror notational convenience we also define
K;(k) = Kj. Let#(j, a) be the number of players that chose facilitgiven the action profile
a. The total cost, or disutility of playerunder pure strategy profite= (a;, a_;) is the sum of
the cost on each of the facilities i,

Costi(a;,a—;) = —ui(a;,a_;) = Z K;(#(j,a)). (2.2)

Jj€a;

Congestion games exhibit a specific combination of anornyamt additive structure, which
allows them to be represented compactly. Omly numbers are needed to specify the costs
(Kjx)jemk<n- The representation also needs to specify)he , |4;| actions, each of which

we treat the common case of additivity separately becausseainenable to special-purpose computational methods
(intuitively, leveraging the linearity of expectation;esBection 4.3).
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Figure 4: Left: a two-player congestion game with threeliide$s. The actions are shown as
ovals containing their respective facilities. Right: th&®B-FNA representation of the same
congestion game.

is a subset of\/. If we use anm-bit binary string to represent each of these subsets, the to
size of the congestion game representatid(isin +m >,y |4il).

An arbitrary congestion game can be encoded as an AGG-FNAnwiloss of compactness,
where allu® are represented as additive utility functions. Given a estign gameg N, M,
(Ai)ien, (K k) jem, k<n), We construct an AGG-FNA with the same number of players antes
number of actions for each player as follows.

e Create) .y |A;| action nodes, corresponding to the actions in the congegtime. In
other words, the action sets do not overlap.

e Create2m function nodes, labeles, . .., pm, q1, - - -, qm). FOr eachj € M, there is an
edge fronmp; to ¢;. For allj € M and for alla € A, if facility j is included in actiornx
in the congestion game, then in the action graph there is g&afedm the action node to
pj, and also an edge frog) to a.

e For eactyp;, definec(p,) = Zaey(j) c(a), i.e.,p; is a simple aggregator. Since its neigh-
bors are the actions that includes faciljtythusc(p;) is the number of players that chose
facility j, which is#(j, a).

o Assign eacly; only one neighbor, namejy;, and define(¢;) = f% (c(p;)) = K;(c(pj)).

In other words¢(g;) is exactlyK;(#(j, a)), the cost on facility;.

e Foreach action node, represent the utility function® as an additive function with weight
—1 for each of its neighbors,

u (@)= > —c(h) =— > K;(#(j,a). (2.3)

jev(a) jev(a)

Example 2.16 (Congestion gameConsider the AGG-FNA representation of a two-player con-
gestion game (see Figure 4). The congestion game has thoitigda labeled{1, 2, 3}. Player
A has actions A1£1} and A2={1, 2}; Player B has actions B1£2, 3} and B2={3}.

Now let us consider the representation size of this AGG-FINAe action graph hdst| +2m
nodes and(m|.A4|) edges; the function nodes, . .., p,,, are simple aggregators and each only
requires constant space; egith requiresh numbers to specify so the total size of the AGG-FNA
is ©(mn +m|Al) = ©(mn+m}_, 5 |Ai]). Thus this AGG-FNA representation has the same
space complexity as the original congestion game repratsemnt
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Figure 5: AGG# representation of the Job Market game.

One extension of congestion gamegplayer-specific congestion gamidgilchtaich, 1996;
Monderer, 2007]. Instead of all players having the samesdgst, in these games each player
has a different set of costs. This can be easily represestatt AGG-FNA by following the
construction above, but using a different set of functiodesy;, . . ., ¢;,,, for each playei.

3 Further Examples

In this section we provide several more examples of stredtigames that can be compactly
represented as AGGs.

3.1 A Job Market

Here we describe a class of example games that can be coymegpe#sented as AG@s. Unlike
the Ice Cream Vendor game, the following example does notie\choosing among actions that
correspond to geographical locations.

Example 3.1 (Job Market game) Consider the individuals competing in a job market. Each
player chooses a field of study and a level of education toesehiThe utility of playef is the
sum of two terms: (a) a constant cost depending only on theerhfield and education level,
capturing the difficulty of studies and the cost of tuitiomldorgone wages; and (b) a variable
reward, depending on (i) the number of players who chosedheedield and education level as
i, (ii) the number of players who chose a related field at theesaducation level, and (iii) the
number of players who chose the same field at one level abdye@wi.

Figure 5 gives an action graph modeling one such job markemnado, in which there are
three fields, Economics, Computer Science and Electricgirieering . For each field there
are four levels of postsecondary study: Diploma, Bachaaster and PhD. Economics and
Computer Science are considered related fields, and so ampGter Science and Electrical En-
gineering. There is another action representing high stlkedacation, which does not require a
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Figure 6: AGG-FN representation of a game with agent-spadiility functions.

choice of field. The maximum in-degree of the action graplvés fihereas a naive representa-
tion of the game as a symmetric game (see Section 2.1) worbpond to a complete action
graph with in-degree 13. Thus this AGiFepresentation is able to take advantage of anonymity
as well as context-specific independence structure.

3.2 Representing Anonymous Games as AGG-FNs

One property of the AGG@representation as defined in Section 2.1 is that utility fiomcu® is
shared by all players who hawein their action sets. What if we want to represent games with
agent-specifiatility functions, where utilities depend not only enand¢(®), but also on the
identity of the player playingv?

Researchers have studiadonymous gamesvhich deviate from symmetric games by al-
lowing agent-specific utility functions [Kalai, 2004; K&l&2005; Daskalakis & Papadimitriou,
2007]. To represent games of this type as AGGs, we canndejusiultiple players share action
«, because that would force those players to have the santg fitiiction u®. It does work to
give agents non-overlapping action sets, replicating @ation once for each agent. However,
the resulting AGGJ is not compact; it does not take advantage of the fact théi ebihe repli-
cated actions affects other players’ utilities in the samg.Wsing function nodes, it is possible
to compactly represent this kind of structure. We agairt spinto separate action nodes for
each player able to take the action. Now we also introduce a function nodéth everyq;
as a neighbor, and definf@® to be a simple aggregator. Ngwgives the total number of agents
who chose action, expressing anonymity, and action nodes inclpdes a neighbor instead of
eachw;. This allows agents to have different utility functionshaut sacrificing representational
compactness.

Example 3.2 (Anonymous game)Consider an anonymous game with two classes of players,
each class sharing the same utility functions. The AGG-FiXersentation of the game is shown

in Figure 6. Players from the first class have action §atl, A2, A3, and players from the
second class have action §&81, B2, B3. Furthermore, the utility functions of the second class
of players exhibit certain context-specific independeniaectire, which are expressed by the
absence of some of the possible edges from function nodesdo aodes B1, B2, B3.
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Figure 7: AGG-FNA representation of a 3-player polymatrante. Function nod& 45 repre-
sents player A's payoffs in his bimatrix game against/B,4 represents player B’s payoffs in his
bimatrix game against A, and so on. To avoid clutter we do howsthe edges from the action
nodes to the function nodes in this graph. Such edges egist4 and B's actions t&/ 45 and
Upa, from A and C’s actions t&/ 4, andU¢ 4, and from B and C’s actions #@gz- andUc 5.

3.3 Representing Polymatrix Games as AGG-FNAs

In a polymatrix gamgYanovskaya, 1968], each player’s utility is the sum ofitiéik resulting
from her bilateral interactions with each of the- 1 other players. This can be represented by
specifying for each pair of playeisand; a bimatrix game (two-player normal form game) with
set of actions4; and A;. A polymatrix game can be compactly represented as an AGS-FN
The encoding is as follows. The AGG-FNA has non-overlapgictipn sets. For each pair of
players(i, j), we create two function nodes to represerind j's payoffs under the bimatrix
game between them. Each of these function nodes has incadges from all of’'s andj’s
actions. For each playerand each of his actions;, there are incoming edges from the- 1
function nodes representintg payoffs in his bimatrix games against each of the otheyga
u® is an additive utility function with weights equal to 1. Bdsen arguments similar to those
in Section 2.1.2, this AGG-FNA representation has the sgmaeescomplexity as the total size
of the bimatrix games.

Example 3.3 (Polymatrix game) Consider the AGG-FNA representation of a three-playerpoly
matrix game, given in Figure 7. Each player’s payoff is thesf her payoffs i2 x 2 game with
played with each of the other players; she is only able to skdter action once. This additive
utility function can be captured by introducing a functiondeU;; to represent each playeis
utility in the bimatrix game played with playgr

3.4 Congestion Games with Action-Specific Rewards

So far the only use we have shown for AGG-FNAs is bringing tixisgame representations
into the AGG framework. Of course, another key advantageuofapproach is the ability to
compactly represent games that would not have been compdet these existing game repre-
sentations. We now give such an example.

Example 3.4 (Congestion game with action-specific rewardsfonsider the following game with
n players. As in a congestion game, there is a set of facilitie®ach action involves choosing a

17



subset of the facilities, and the cost for faciljtdepends only on the number of players that chose
facility j. Now further assume that, in addition to the cost of usingfétedities, each playei
also derives some utilitit; depending only on her own action, i.e., the set of facilisles chose.
This utility is not necessarily additive across facilitieshat is, in general ifA, B € M and
ANB=10,R,(AUB) # R;(A) + R;(B). Soi's total utility is

ui(a) = Ri(a;) = Y K;(#(j, a)). (3.1)

JjEa;

This game can model a situation in which the players use ttiktias to complete a task, and the
utility of the task depends on the facilities chosen. Andtiterpretation is given by Ben-Sasson
et al.[2006], in their analysis of “congestion games with strayempsts,” which also have exactly
this type of utility function. This work interpreted (thegaéive of)R;(a;) as the computational
cost of choosing the pure strategyin a congestion game.

This game cannot be compactly represented as a congestina gaa player-specific con-
gestion gamé but it can be compactly represented as an AGG-FNA. We cheated; | action
nodes, giving the agents nonoverlapping action sets. We sown in Section 2.3.3 that we
can use function nodes and additive utility functions taespnt the congestion-game-like costs.
Beyond this construction, we just need to create a functaaten; for each player and define
¢(r;) to be equal taR;(a;). The neighbors of; arei’s entire action setv(r;) = A;. Since the
action sets do not overlap, there are oly;| distinct configurations oved,. In other words,
|C(m)| = |A;| and we need only)(]4;|) space to represent eadh;. The total size of the
representation i€) (mn +m .y [Aq]).

4 Computing Expected Payoff with AGGs

Up to this point, we have concentrated on how AGGs may be wseampactly represent games
of interest. But compact representation is only half theystand indeed by itself is relatively
easy to achieve. Our goal is to identify a compact representthat can be used directly (e.g.,
without conversion to its induced normal form) for the corgtion of game-theoretic quantities
of interest. We now turn to this computational perspectwel show that we can indeed leverage
AGG's representational compactness in the computatioamwfegtheoretic quantities. In this sec-
tion we focus on the computational task of computing an agerpected payoff under a mixed
strategy profile. While this quantity can be important ireltsit is even more important as an
inner-loop problem in the computation of many game-théogiantities. Some examples in-
clude computing best responses, checking if a given mixatesty profile is a Nash equilibrium,
Govindan and Wilson’s continuation methods for finding Neghilibria [Govindan & Wilson,
2003; Govindan & Wilson, 2004], the simplicial subdivisialgorithm for finding Nash equi-
libria [van der Laaret al,, 1987], Turocy’s algorithm for computing quantal respoagailibria
[Turocy, 2005], and Papadimitriou and Roughgarden'’s digarfor finding correlated equilibria
[Papadimitriou & Roughgarden, 2008]. We discuss some cfelapplications in Section 5.

Our main result of this section is an algorithm that effichgrmbmputes expected payoffs
of AGGs by exploiting their context-specific independeragnymity and additivity structure.
In Section 4.1 we introduce our expected payoff algorithmAGG-(s, and show (in Theorem

8Interestingly, Ben-Sasscet al. [2006] showed that this game belongs to the set of poterdialeg, which implies
that there exists an equivalent congestion game. Howeugdjrg such a congestion game from the potential function
following Monderer and Shapley’s [1996] construction gielan exponential number of facilities, meaning that this
congestion game representation is exponentially larger the AGG-FNA representation presented here.
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4.1) that the algorithm runs in time polynomial in the sizetod input AGG#. For the special
case of symmetric strategies in symmetric A@§-we present a different algorithm in Section
4.1.4 which runs asymptotically faster than our generadritigm for AGG+)s; in Section 4.1.5
we extend this approach to the broader class-efmmetricAGG-J)s. Finally, in Sections 4.2
and 4.3 we extend our expected payoff algorithm to AGG-FN$ ABG-FNAs respectively,
and identify (in Theorems 4.5 and 4.6) conditions under Wilhese extended algorithms run in
polynomial time.

4.1 Computing Expected Payoff for AGG#s

We must begin by introducing some notation. LX) denote the set of all probability distri-
butions over a seX. Define the set of mixed strategies foas>; = ¢(4,), and the set of all
mixed strategy profiles as = [ [,y ¥;. Denote an element &f; by o;, an element oE by o,
and the probability that plays actiony aso;(«). Thesupportof a mixed strategy; is the set
of pure strategies played with positive probability (imure strategies; for whicho;(a;) > 0).

Now we can write the expected utility to agerfor playing pure strategy;, given that all
other agents play the mixed strategy profile;, as

Vo (0-i) = Z ui(ai,a—;) Pr(a—ilo—;), (4.1)
a_;€A_;
Pr(a_;lo—;) = Haj(aj). (4.2)
J#i

Note that Equation 4.2 gives the probability @f, under the mixed strategy_,. In the rest
of this section we focus on the problem of computl@g(o,i) giveni, a; ando_;. Having
established the machinery to compifg (0_;), we can then compute the expected utility of
playeri under a mixed strategy profiteas) _, . . oi(a)Vyi (o).

One might wonder why Equations (4.1) and (4.2) are not theadride story. Notice that
Equation (4.1) is a sum over the sét; of action profiles of players other than The number
of terms is][;_, |4;], which grows exponentially im. If we were to use the normal form
representation, there really would pé_;| different outcomes to consider, each with potentially
distinct payoff values. Thus, using normal form the evaarabf Equation (4.1) would be the
best possible algorithm for computir’tgi. Since AGGs are fully expressive, the same is true
for games without any structure represented as AGGs. Haweneat about games that are
exponentially more compact when represented as AGGs thamn wdpresented in the normal
form? For these games, evaluating Equation (4.1) amouats &xponential-time algorithm.

In this section we present an algorithm that given gny; ando_;, computes the expected
payoff V/ (¢_;) in time polynomial in the size of the AGB-+epresentation. In other words,
our algorithm is efficient if the AGG}is compact, and requires time exponentiabhifif it is
not. In particular, recall from Proposition 2.6 any AGGwith maximum in-degree bounded
by a constant has a representation size that is polynomial iAs a result our algorithm is
polynomial inn for such games.

4.1.1 Exploiting Context-Specific Independence: Projeatin

First, we consider how to take advantage of the contextip@&udependence structure of an
AGG-): the fact that's payoff when playing:; only depends on configurations over the neigh-
borhood ofi. The key idea is that we camojectother players’ strategies onto a smaller action
space that is strategically the same from the point of viearodgent who chose actian. That
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Figure 8: Projection of the action graph. Left: action grapthe Ice Cream VVendor game. Right:
projected action graph and action sets with respect to tti@aC1.

is, we construct a graph from the point of view of a given agexpressing his sense that actions
that do not affect his chosen action are in a sense the “satio@ Ad his can be seen as inducing
a context-specific graphical game. Formally, for everyamti € A define a reduced gragh(®)

by including only the nodes(a) and a new node denotéd The only edges included () are
the directed edges from each of the nodés) to the nodex. Player;j’s actiona; is projected

to a nodmga) in the reduced grap&(®) by the mapping

(@ _ | aj aj€via)
a; { 0 a,&via) ° (4.3)

In other words, actions that are notii«) (and therefore do not affect the payoffs of agents

playinga) are projected onto a new actidh, The resultingprojectedaction setA§a) has cardi-
nality at mostmin(|A4,|, |[v(«)| + 1). This is illustrated in Figure 8, using the Ice Cream Vendor
game described in Example 2.5.

We define the set of mixed strategies on the projected aomm% by 3 (@) = (Ag.o‘)). A
mixed strategy; on the original action sed; is projected tor("‘) 25” by the mapping

(@) (gl)y = oj(a;) a; € v(o) »
g (a ) - { Za’eAj\u(a) O'j(O/) a;a) _ @ . ( . )

So givena; ando_;, we can compute ) in O(nl|.A|) time in the worst case. Now we can
operate entirely on the projected space, and write the éap@ayoff as
(ai))

VaL (0-i) = Z u (ai,C(““)(ai,a_i)) ( (as

o) e A0

Pr( ((“ (“L)) HJ(G7 ( (a:) )

J#i

The summation is over'™”, which in the worst case haé(a;)| + 1)~V terms. So for
AGG-{s with strict or context-specific independence structtmer,\pwtingvji (o—;) in this way
is exponentially faster than doing the summation in (4.0gatly. However, the time complexity
of this approach is still exponential in
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4.1.2 Exploiting Anonymity: Summing over Configurations

Next, we want to take advantage of the anonymity structurkh@®fAGG+. Recall from our
discussion of representation size that the number of distianfigurations is usually smaller
than the number of distinct pure action profiles. So ideally,want to compute the expected
payoffV; (o_;) as a sum over the possible configurations, weighted by thefrabilities:

Vi(o_;) = u; (i, @) Pr(c@)|gle)) (4.5)
)
Pr (c(‘”) 0(‘“)) = Z ﬁ oj(aj). (4.6)
a: J=1
€@ (a) = clas)

whereo (@) = (q;,0”) andPr(c(e)|5(21)) is the probability of(e*) given the mixed strategy
profile o(¢), Recall thatC'(*9) is the set of configurations overa;) given thati playeda;.

So Equation (4.5) is a summation of sigg(®")|, the number of configurations given that
playeda;, which is polynomial inn if |v(a;)| is bounded by a constant. The difficult task is
to computePr(c(*)|o(@)) for all ¢(@) € C(@9), i.e., the probability distribution ovef(®:?)
induced byo (%), We observe that the sum in Equation (4.6) is over the set attibn profiles
corresponding to the configuratieff). The size of this set is exponential in the number of
players. Therefore directly computing the probabilitytdisition using Equation (4.6) would
take time exponential in.

Can we do better? We observe that the players’ mixed stetege independent, i.e.is a
product probability distribution(a) = [, oi(a;). Also, each player affects the configuration
independently. This structure allows us to use dynamicramoging (DP) to efficiently compute
the probability distributiorPr(c(*)|o(*)). The intuition behind our algorithm is to apply one
agent's mixed strategy at a time, effectively adding onenagea time to the action graph. Let
aﬁ“i denote the projected strategy profile of agefts...,k}. Denote byC,g““) the set of
configurations induced by actions of agefits. .., k}. Similarly, writec,(j”) € C,i‘”). Denote
by P, the probability distribution orC{* induced byo""), and by P;c] the probability of
configurationc. At iteration k of the algorithm, we comput&;, from P,_; and a,(;“). After
iterationn, the algorithm stops and returify. The pseudocode of our DP algorithm is shown

as Algorithm 1, and our full algorithm for computing (oc_;) is summarized in Algorithm 2.

Eachc,(c“"') is represented as a sequence of integers;,$8 a mapping from sequences of inte-
gers to real numbers. We need a data structure to manipuletigpsobability distributions over
configurations (sequences of integers) which permits gaickup, insertion and enumeration.
An efficient data structure for this purpose iria [Fredkin, 1962]. Tries are commonly used in
text processing to store strings of characters, e.g. a®daries for spell checkers. Here we use
tries to store strings of integers rather than characteoth Bokup and insertion complexity is
linear in|v(a;)|. To achieve efficient enumeration of all elements of a trie store the elements
in a list, in the order of their insertion. We omit the proofaafrrectness of our algorithm, which
is relatively straightforward. It is given in Section 2.2f[Jiang, 2006].

4.1.3 Complexity

Let C(*9)(5_;) denote the set of configurations owefu;) that have positive probability of
occurring under the mixed strate@y;,o_;). In other words, this is the number of terms we
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Algorithm 1: Computing the induced probability distributi®r(c(®!) | (@),

Input: a;, olai)

Output: P,,, which is the distributioPr(c(%)|o(%)) represented as a trie.
) = (0,...,0);

Po[c((;“ ]=1.0;// Initialization: ¢\ ={c{}

for k =1tondo

Initialize Py, to be an empty trie;

foreach cfg‘ﬁ)l from P,_, do

foreacha " € A" such that\"" (a\") > 0 do

(ai) (ai).
Cr *Ck 1

|fa“‘ # () then
Lc,(c (a (a))+ 1;// Apply action a,(c)

if Pyley ()] does not exist ydhen
| Plei™] = 0.0;

P 4= P o)

return P,

need to add together when doing the weighted sum in Equatish (Whero_; has full support,
C(G’LZ) (0'72> — C(aivi)

Theorem 4.1 Given an AGG) representation of a gamé’s expected payoff;/ (o_;) can be
computed inO(n|A| + n|v(a;)?|C@)(o_;)|) time, which is polynomial in the size of the
representation. I, the in-degree of the action graph, is bounded by a consi@b(g,i) can
be computed in time polynomialin

Proof. Since looking up an entry in a trie takes time linear in thes 9% the key, which
is |v(a;)| in our case, the complexity of doing the weighted sum in Equaf4.5) is
O(lv(a)[|C) (a))).-

Algorithm 1 requiresn iterations; in iterationk, we look at all possible combina-
tions of c“‘1 and a,(c“"'), and in each case do a trie look-up which co&§v(a;)l).
since|A\)| < [v(a:)] + 1, and|C\™]| < |Clai9)|, the complexity of Algorithm 1 is

O(n|v(a;)?|C@ D) (). This dominates the complexity of summing up Equation (4.5)
Adding the cost of computlng_Z , we get the overall complexity of expected payoff com-
putation® (n|A| + n|v(a;)|?|C @D (o_;)]).

Since|C(@) (g_;)| < |Cled)| < |C(@)], and|C(@)] is the number of payoff values
stored in payoff function.®:, this means that expected payoffs can be computed in polyno-
mial time with respect to the size of the AG@SFurthermore, our algorithm is able to exploit
strategies with small supports which lead to a si@it?) (o_;)|. Since|C(®:)
by % this implies that if the in-degree of the graph is boundedalonstant,
then the complexity of computing expected payoff®is|.A| + nZ+1). m

The proof of Theorem 4.1 shows that besides exploiting thapaztness of the AG@-
representation, our algorithm is also able to exploit treesavhere the mixed strategy profiles
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Algorithm 2 Computing expected utilityf(ji (o-i), givena; ando_;.

1. for eachj # i, compute the projected mixed strateg{)?” using Equation (4.4):

J

(a0) ((a1)) = oj(a;) aj € V(a7)
( )—{ 5

g; j (a7
! o’ €Aj\v(a;) oj(a’)

2. compute the probability distributidPr(c(*)|a;, o*) by following Algorithm 1.
3. calculate the expected utility using the following wegghsum (Equation (4.5)):

Vi(o-i) = Z U; (ai,c(‘”)) Pr ( @i)| g (ai) ) .

clai) eolagsi)

given have small support sizes, because the time complégjgnds onC(*%) (s_;)| which

is small when support sizes are small. This is important acfice, since we will often need
to carry out expected utility computations for strategyfies with small supports. Portet al.
[2008] observed that quite often games have Nash equiltitiasmall support, and proposed
algorithms that explicitly search for such equilibria. Ither algorithms for computing Nash
equilibria such as Govindan-Wilson and simplicial subsliv, it is also quite often necessary to
compute expected payoffs for mixed strategy profiles witalssupport.

Of course it is not necessary to apply the agents’ mixedegji@s in the ordet . .. n. In fact,
we can apply the strategies in any order. Although the nurabeonfigurationgC(:%) (s _;)|
remains the same, the ordering does affect the interma:ﬁaf@urationsﬁ,i“"'). We can use the
following heuristic to try to minimize the number of interdiate configurations: sort the players
in ascending order of the sizes of their projected actios. séhis reduces the amount of work
we do in earlier iterations of Algorithm 1, but does not chaitg overall complexity.

4.1.4 The Case of Symmetric Strategies in Symmetric AG@s

As described in Section 2.1, if a game is symmetric it can Ipeesented as an AGGwith

A; = Aforalli € N. Given a symmetric game, we are often interested in comgebipected
utilities undersymmetriamixed strategy profiles, where a mixed strategy prefilse symmetric

if o; = 0; = o, forall i, € N. In Section 5.2.2 we will discuss algorithms that make use
of expected utility computation under symmetric strategpfifes to compute a symmetric Nash
equilibrium of symmetric games.

To compute the expected utilify/ (c.), we could use the algorithm we proposed for gen-
eral AGGY)s under arbitrary mixed strategies, which requires timgmpatial in the size of the
AGG-{). But we can gain additional computational speedup by etiptpthe symmetry in the
game and the strategy profile.

As before, we want to use Equation (4.5) to compute the ergadility, so the crucial task
is again computing the probability distribution over peigd configurationsPr(c(@:)|o(:)),
Recall thatr(*) = (a;,0'%)). DefinePr(c(®)|o{"")) to be the distribution induced by,
the partial mixed strategy profile of players other thiaeach playing the symmetric strategy
o\*). Once we have the distributioﬁr(cW)|a*‘”)), we can then compute the distribution
Pr(c(@)|g (@) straightforwardly by applying players strategya;. In the rest of this section
we focus on computmg’r( ).

Define S(c(*)) to be the set contaming all action profiles) such thaiC(a(®)) = ¢l@i),
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Since all agents have the same mixed strategies, each pioe pofile in S(c(aﬁ) is equally
likely, so for anya(*) € S(c(@))

Pr ()]0} = [s(ele) [ Pr (a0 o) (4.7)
Pr (o) = T (0" ()", (4.8)
acAlai)

The sizes of5(c(#)) are given by the multinomial coefficient

5 (c)| = naeAfZ><c1<£><a>>!' (4.9)

Better still, using a Gray code technique we can avoid reeyeilg these equations for every
cl@) ¢ ¢(@), Denote the configuration obtained fraftt:) by decrementing by one the number
of agents taking action € .A(*) and incrementing by one the number of agents taking action

o € Ale) aselad) = cgiia,). Then consider the grapti..,, whose nodes are the elements
of the setC(¢), and whose directed edges indicate the effect of the operati — o). This
graphis a regular triangular lattice inscribed withif}.4(*:)| — 1)-dimensional simplex. Having
computedPr(c(®)|o{"")) for one node offl ., corresponding to configuratiaf®:), we can
compute the result for an adjacent nodéifl ) time,

(ai) ¢ 1\ (ai)
Pr(c@  jpla0) = __ 2 @)D () plan) | 4.10
r (C(aﬂa )|U ) aiai)(a) (c(“i)(a/) N 1) r (c |0 ) ( )

H ;) always has a Hamiltonian path (attributed to an unpublisbsalt of Knuth by Klings-
berg [1982]), so having computdt(c(@)|o{*") for an initial c(*) using Equation (4.8), the
results for all other projected configurations (node/{a.,)) can be computed by using Equa-
tion (4.10) at each subsequent step on the path. Generhgngamiltonian path corresponds
to finding a combinatorial Gray code for compositions; aroetgm with constant amortized
running time is given by Klingsberg [1982]. Intuitively, i easy to see that a simple, “lawn-
mower” Hamiltonian path exists for any lower-dimensionadjpction of H ., with the only
state required to compute the next node in the path beingeatitin value for each dimension.

Our algorithm for computing the distributidpr (c(“*)|aiai)) is summarized in Algorithm
3. For computing expected utility, we again use Algorithnex;ept with Algorithm 3 replacing
Algorithm 1 as the subroutine for computing the distribntiex (c(‘“) aﬁ‘“)).

Theorem 4.2 Computation of the expected utility/, (.. ) under a symmetric strategy profile for
symmetric action-graph games using Equati¢hs), (4.7), (4.8)and(4.10)takes timeD(|A| +
[v(a:)] |Ce) (al@D)]).

Proof. Projection too (@) takesO(|.A|) time since the strategies are symmetric. Equa-
tion (4.5) has|C(®)(s(*))| summands. The probability for the initial configuration re-
quires O(n) time. Using Gray codes the computation of subsequent pilitiesh can

be done in constant amortized time for each configuratiomceSieach look-up of the
utility function takesO(|v(a;)|) time, the total complexity of the algorithm i9(|.A] +
v(a;)] |C) (o)) m
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Algorithm 3 Computing distributiorPr (c(‘“) U,Ef”)) in a symmetric AGG)

1. lete®) = ¢*), wherecy'?) is the initial node of a Hamiltonian path &f .., .

2. computePr (c<”i)|aiai)) using Equation (4.7):

Pr (c<ai>|giai>) _ (n—1)! 5 [T @) @.

HaEA("”i) (C(am)(a ’ acAlaq)

3. While there are more configurationsfi®:):

() get the next configurationmi) in the Hamiltonian path, using Klingsberg’'s algorithm

a—al)
[Klingsberg, 1982].
(b) computePr (c(‘“) ,)|a*‘“)) using Equation (4.10):

(a—a

(a;) N (aq)
Pr (cgiia,)|a*“7')) = — i* (@) (a) Pr (C(a7’)|0£a*)) :
0" (a) (el (o) + 1)

(©) letel@) = (o)

(a—al)"

4. outputPr (c(“’i)|aiai)) for all (@) ¢ (@)

o(@)) in a k-symmetric AGGf)

Algorithm 4 Computing the probability distributioRr(c(*:)
under ak-symmetric mixed strategy profite(®:).

1. Partition the players according f&vi, ..., Ni}.

2. Foreach € {1,...,k}, computePr(c(“i)|a§\‘,‘;)), the probability distribution induced by‘]\?li), the
partial strategy profile of players iN;. Sinceag\?l” is symmetric, this can be computed efficiently
using Algorithm 3 as discussed in Section 4.1.4.

3. Combine thek probability distributions together using Algorithm 1, wittng in the distribution

pr(c(aq,) |0-(C"L')).

Note that this is faster than our dynamic programming atgorifor general AGGAs under
arbitrary strategies, whose complexityd$n|.A| + n|v(a;)|? |C(®) (¢(2))|) by Theorem 4.1. In
the usual case where the second term dominates the firstgtivétlam for symmetric strategies
is faster by a factor of|v(a;)|.

4.1.5 k-symmetric Games

We now move to a generalization of symmetry in games that Wekesymmetry.

Definition 4.3 An AGG# is k-symmetric if there exists a partitionVy, . . ., Ni } of V such that
foralll e {1,...,k}, foralli,j e N;, A; = A;.

Intuitively, k-symmetric AGGHs represent games withclasses of identical agents, where

agents within each class are identical. Note that all gamee¢rigially n-symmetric. The Ice
Cream Vendor game of Example 2.5 is a nontriviadymmetric AGGH with k& = 3.
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Given ak-symmetric AGG@ with partition {Vy, ..., Ny}, a mixed strategy profile is k-
symmetric if for alll € {1,...,k}, forall i, € N;, 0; = o;. We are often interested in
computing expected utility undérsymmetric strategy profiles. For example in Section 5.22 w
will discuss algorithms that make use of such expectedytbmputations to find-symmetric
Nash equilibria ink-symmetric games. To compute expected utility undersymmetric mixed
strategy profile, we can use a hybrid approach when comptitangrobability distribution over
configurations, shown in Algorithm 4. Observe that this alpon combines our specialized Al-
gorithm 3 for handling symmetric games from Section 4.1 #hwie idea of running Algorithm 1
on the joint mixed strategies of subgroups of agents digclasthe end of Section 4.1.3.

4.2 Computing Expected Payoff with AGG-FNs

Algorithm 1 cannot be directly applied to AGG-FNs with arbity f7. First of all, projection of
strategies does not work directly, because a playdaying an actiora; ¢ v(«) could still affect
(@) via function nodes. Furthermore, the general idea of usymguohic programming to build up
the probability distribution by adding one player at a tinees not work because for an arbitrary
function nodep € v(«), each player would not be guaranteed to aftép) independently. We
could convert the AGG-FN to an AG@-in order to apply our algorithm, but then we would
not be able to translate the extra compactness of AGG-FNsAB&-(s into more efficient
computation. In this section we identify two subclasses GIGAFN for which expected utility
can be efficiently computed. In Section 4.2.1 we show thatndikefunction nodes belong to
a restricted class of contribution-independent functiodes, expected utility can be computed
in polynomial time. In Section 4.2.2 we reinterpret the estpd utility problem as a Bayesian
network inference problem, which can be computed in polyiabtime if the resulting Bayesian
network has bounded treewidth.

4.2.1 Contribution-Independent Function Nodes
Definition 4.4 A function node in an AGG-FN iscontribution-independent (CHf

e v(p) C A, i.e., the neighbors qf are action nodes.

e There exists a commutative and associative operatand for eachn € v(p) an integer
w,, such that given an action profite= (a1, ..., an), ¢(p) = *icN:a;ev(p) Wa; -

e The running time of eack operation is bounded by a polynomialin |.A| and|P|. Fur-
thermorex can be represented in space polynomiaki.A| and|P].

An AGG-FN is contribution-independent if all its functioodes are contribution-independent.

Note that it follows from this definition that(p) can be written as a function ef?) by
collecting termsi(p) = f7(c®)) = % () (K6 wa).

Simple aggregators can be represented as contributi@pémtient function nodes, with the
+ operator serving as, andw,, = 1 for all «. The Coffee Shop game is thus an example of a
contribution-independent AGG-FN. For the parity game iraBple 2.8 is instead addition
mod 2. An example of a non-additive CI function node arisea perfect-information model
of an (advertising) auction in which actions corresponditbamounts [Thompson & Leyton-
Brown, 2009]. Here we want(p) to represent the amount of the winning bid, and so wevlet
be the bid amount corresponding to actigrandx* be themax operator.

The advantage of contribution-independent AGG-FNs is fibvaall function node, each
player’s strategy affects(p) independently. This fact allows us to adapt our algorithreffe
ciently compute the expected utiliwj% (o—;). For simplicity we present the algorithm for the
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case where we have one operatdior all p € P, but our approach can be directly applied to
games with different operators ang, associated with different function nodes.

We define thecontributionof actiona to nodem € A U P, denoted, (m), as 1 ifm = «,
0if me A\ {a}, and*m,@(m)(*i“:(i’”l) wy,) if m € P. Then itis easy to verify that given an
action profilea = (a1, ..., a,), c(a) = Z;;l da; () foralla € Aande(p) = *_; dq; (p) for
all p € P. Given that playef playeda;, and for alla. € A, we define therojected contribution
of actiona undera;, denoteds"”, as the tupl&(da (m))mev(a,)- Note that different actions
a may have identical projected contributions undgr Player;’s mixed strategy; induces a
probability distribution ovey’s projected contribution®r () |o;) = 37wy, 05(ay).
Now we can operate entirely using the probabilities on teje contributions instead of the
mixed strategy probabilities. This is analogous to thequtipn ofo; to aﬁ“” in our algorithm
for AGG-{s.

Algorithm 1 for computing the distributioRr(c(*)|o) can be straightforwardly adopted to
work with contribution-independent AGG-FNs. Whenever \pplg playerk’s contribution&fbﬁ?)
to cgf)l, the resulting configuration,(c“"') is computed componentwise as foIIOV\L:‘;C i)(m) =
5557 (m) + ) (m) if m € A, andc(™ (m) = 647 (m) * ) (m) if m € P.

To analyze the complexity of computing expected utilitys ihecessary to know the represen-
tation size of a contribution-independent AGG-FN. For efacittion nodep we need to specify
* and (wa )aew(p) instead of 7 directly. Let|| x || denote the representation sizesof Then
the total size of a contribution-independent AGG-FNIIES . 4 |C(@)| + || % ||). As discussed
in Section 2.2.3, this size is not necessarily polynomiatinA| and|P|; although when the
conditions in Corollary 2.11 are satisfied, the represeniatze is polynomial.

Theorem 4.5 Expected utility can be computed in time polynomial in tize sif a contribution-
independent AGG-FN. Furthermore, if the in-degrees of tbgoa nodes are bounded by a
constant and the sizes of rangé®(f?)| for all p € P are bounded by a polynomial im, |.A|
and|P|, then expected utility can be computed in time polynomial jod| and|P|.

Proof Sketch. Following similar complexity analysis as Theorem 4.1, if ABG-FN is
contribution-independent, expected utility (o_;) can be computed i@ (n|A||C*)|(T; +
|v(a;)])) time, whereT, denotes the maximum running time of aroperation. Sincd’, is
polynomial inn, |.A| and|P| by Definition 4.4, the running time for computing expecteitt ut
ity is polynomial in the size of the AGG-FN representatiomeTsecond part of the theorem
follows from a direct application of Corollary 2.1M.

For AGG-FNs whose function nodes are all simple aggregatacsh player’s set of projected
contributions has size at mdst(a;) + 1|, as opposed tp4] in the general case. This leads to a
run time complexity ofO(n|A| + n|v(a;)|?|C@)]), which is better than the complexity of the
general case proved in Theorem 4.5. Applied to the Coffeg $fame, sincéC(®)| = O(n?)
and all function nodes are simple aggregators, our algarttkesO(n|.A| + n*) time, which
growslinearly in |A].

4.2.2 Beyond Contribution Independence

What about the case where not all function nodes are cotitibindependent—is there any-
thing we can do besides converting the AGG-FN into its indua&G+)? It turns out that by
reducing the problem of computing expected utility to a Bage network inference problem,
we can still efficiently compute expected utilities for @ntadditional classes of AGG-FNs.
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Bayesian networks compactly represent probability distions exhibiting conditional in-
dependence structure (see, e.g., Russell and Norvig [RO@3Bayesian network is a DAG
in which nodes represent random variables and edges repisect probabilistic dependence.
Each nodeX is associated with a conditional probability distributi@PD) specifying the prob-
ability of each realization of random variablé conditional on the realizations of its parent
random variables.

A key step in our approach for computing expected utility iB@-FNs is computing the
probability distribution over configuratioriar(c(¢!)|s(¢)). If we treat each node:’s configu-
ration ¢(m) as a random variable, then the distribution over configonatican be interpreted
as the joint probability distribution over the set of randeamiables{c(m)},cy(q,)- Given an
AGG-FN, a playei and an actiom; € A;, we can construct anduced Bayesian netwolk; :

e The nodes oBf” consist of (i) one node for each elementgf;); (ii) one node for each
neighbor of a function node belonging #da;); and (iii) one node for each neighbor of
a function node added in the previous step, and so on until or@ fiunction nodes are
added. Each of these nodesrepresents the random variaklen). We further introduce
another kind of node: (ivp nodesoq, ..., 0,, representing each player's mixed strategy.
The domain of each random variablgis A;.

e The edges oB}'” are constructed by keeping all edges that go into the fumctimles that
are included in3, ignoring edges that go into action nodes. Furthermoredoh@layer;,
we create an edge fromy to each ofj’s actionsa; € A;.

e The conditional probability distribution (CPD) at each €tion nodep is just the determin-
istic function f?. The CPD at each action nodé is a deterministic function that returns
the number of its parents (observe that these are all mixategy nodes) that take the
valuea’. Mixed strategy nodes have no incoming edges; their (uriondl) probabil-
ity distributions are the mixed strategies of the corresipog players, except for playeér
whose noder; takes the deterministic valug.

It is straightforward to verify thaBgi is a DAG, and that the joint distribution on random vari-
ables{c(m)}mew (o) is exactly the distribution over configuratioBs(c(@)|(a;, 0'%)). This
joint distribution can then be computed using a standardrétgn such as clique tree propaga-
tion or variable elimination. The running times of such altfons are worst-case exponential;
however, for Bayesian networks with bounded tree-widtairttunning times are polynomial.

Further speedups are possible at nodes in the induced Bayestwork that correspond
to action nodes and contribution-independent functionesodl he deterministic CPDs at such
nodes can be formulated using independent contributi@m fach player’s strategy. This is
an example otausal independencdructure in Bayesian networks studied by Heckerman and
Breese [1996] and Zhang and Poole [1996], who proposedéliffenethods for exploiting such
structure to speed up Bayesian network inference. Suchadgtthare the common underlying
idea of decomposing the CPDs into independent contribsitiwhich is intuitively similar to our
approach in Algorithm 1.

4.3 Computing Expected Payoff with AGG-FNASs

Due to the linearity of expectation, the expected utility pfaying an actior; with an additive
utility function with coefficienty\,,.)mey(a,) IS

Vile)= Y AmEle(m)lai, o, (4.12)

mev(a;)
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whereE[c(m)|a;, 0] is the expected value @fm) given the strategy profilé;,o_;). Thus
we can compute these expected values for each v(a;), then sum them up as in Equation
(4.11) to get the expected utility. th is an action node, theB[c(m)|a;, o] is the expected
number of players that chose, whichis} _, \, o;(m). The more interesting case is wheris a
function node. Recall thai{m) = f™(c(™)) wherec(™) is the configuration over the neighbors
of m. We can write the expected valuedfn) as

Ele(m)las o= > (™) Pr(c™ai, o). (4.12)
c(m) ec(m)

This has the same form as Equation (4.5) for the expectdtj/dt’gi (o_i), except that we have
f™ instead ofu®. Thus our results for the computation of Equation (4.5) alsply here. That
is, if the neighbors ofn are action nodes and/or contribution-independent funcimdes, then
E[¢(m)|a;, o—;] can be computed in polynomial time.

Theorem 4.6 Suppose.© is represented as an additive utility function in a given AGRA. If
each of the neighbors ofis either (i) an action node, or (ii) a function node whoseghdiors are
action nodes and/or contribution-independent functiode® then the expected utility (o_;)
can be computed in time polynomial in the size of the reptaten. Furthermore, if the in-
degrees of the neighbors afare bounded by a constant, and the sizes of raffi§ég?)| for all

p € P are bounded by a polynomial in, |.4| and|P|, then the expected utility can be computed
in time polynomial im, |A| and|P|.

It is straightforward to verify that our AGG-FNA represetidas of polymatrix games, con-
gestion games, player-specific congestion games and the gaExample 3.4 all satisfy the
conditions of Theorem 4.6.

5 Computing Sample Equilibria with AGGs

In this section we consider some theoretical and practipplieations of our expected utility
algorithm. In Section 5.1 we analyze the complexity of firgdan sample-Nash equilibrium
in an AGG and show that it is PPAD-complete. In Section 5.2 wtered our expected utility
algorithm to the computation of payoff Jacobians, which kew step in several algorithms for
computinge-Nash equilibria, including the Govindan-Wilson algonithin Section 5.3 we show
that it can also speed up the simplicial subdivision al¢ponitand in Section 5.4 we show that it
can be used to find ancorrelated equilibrium in polynomial time.

5.1 Complexity of Finding a Nash Equilibrium

In this section we consider the complexity of finding a Nashildzyium of an AGG. Since a Nash
equilibrium for a game of more that two players may requirational numbers in the probabili-
ties, for practical computation it is necessary to consigigroximations to Nash equilibria. Here
we consider the frequently-used notioncellash equilibrium:

9Here we focus on the problems of finding a sample Nash or eteatlequilibrium: in other words, identifying
any single equilibrium. In games with multiple equilibri&,can be useful to find all equilibria or to find the “best”
equilibrium according to some criterion. However, negattemplexity results hold for both problems (see e.g. [Genit
& Sandholm, 2008; Papadimitriou & Roughgarden, 2008; ShoBal eyton-Brown, 2009]). For the case of bimatrix
games, Mangasarian [1964] proposed an algorithm for eratingrall Nash equilibria, and Sandholet al. [2005]
proposed and evaluated a practical approach for compuptimal Nash equilibria using mixed-integer programming.
Finding practical heuristic algorithms for these probleons:-player games remains an interesting open problem, but
has received relatively little study to date.
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Definition 5.1 (e-Nash Equilibrium) A mixed strategy profile is an e-Nash equilibrium for
somee > (O ifforall i € N, forall a; € A;, u;(0) + € > u;(a;,0-;)

Intuitively, each player cannot gain more thahy deviating from her mixed strategy. For any
game representation, define its NASH problem to be the pmobliefinding ane-Nash equilib-
rium of a game encoded in that representation, for segieen as part of the input. A series of
recent papers [Chen & Deng, 2006; Goldberg & Papadimit2006; Daskalakigt al., 2006b]
have shown that the NASH problem farplayer normal-form games with > 2 is complete
for the complexity class PPAD, which is contained in NP but krmwn to be in P. Turning to
compact representations, Daskala#isal. [2006a] showed that the complexity of computing
expected utility plays a vital role in the complexity of findi ane-Nash equilibrium.

Definition 5.2 (Polynomial type [Daskalakiset al., 2006a]) A game representation hgmly-
nomial typeif the number of agenta and the sizes of the action set$;| are bounded by a
polynomial in the size of the representation.

All AGG variants have polynomial type, since action setsrapresented explicitly.

Theorem 5.3 ([Daskalakiset al., 2006a]) If a game representation satisfies the following prop-
erties: (1) the representation has polynomial type, ancgi@®ected utility can be computed using
an arithmetic binary circuit with polynomial length, wittodes evaluating to constant values or
performing addition, substraction, or multiplication ohelir inputs, then the NASH problem
for this representation can be polynomially reduced to t#&SN problem for some two-player,
normal-form game.

Since the NASH problem is in PPAD for two-player, normalrfiogames, the theorem implies
that if the above properties hold, the NASH problem for suclompact game representation is
in PPAD.

Corollary 5.4 The complexity of NASH for AG( is PPAD-complete.

Remark. It may not be clear why this would be surprising or encourggindeed, the PPAD-
hardness part of the claim is neither. However, the PPAD-bezehip part of the claim is a
positive result. Specifically, it implies that the problerfimding a Nash equilibrium in an
AGG-) can be reduced to the problem of finding a Nash equilibrium twaplayer normal-
form game with size polynomial in the size of the AGIGThis is in contrast to the normal form
representation of the original game, which can be expoalgntarger than the AGGk In other
words, if we instead try to solve for a Nash equilibrium using normal form representation of
the original game, we would face a PPAD-complete problerh ait input exponentially larger
than the AGG} representation.

Proof sketch We first show that the problem belongs to PPAD, by constrgcéircircuit
that computes expected utility and satisfies the seconditiomadf Theorem 5.3° Recall
that our expected utility algorithm consists of Equatiojdthen Algorithm 1, and finally
Equation (4.5). Equations (4.4) and (4.5) can be straigivdicdly translated into arithmetic
circuits using addition and multiplication nodes. Alghrit 1 involves for loops that cannot
be directly translated to an arithmetic circuit, but we alssehat we can unroll the for loops
and still end up with a polynomial number of operations. Tésuiting circuit resembles a
lattice withn levels; at thek-th level there ar¢C,§‘“) addition nodes. Each addition node

corresponds to a configuratieff) € C\“"), and calculate®’; [c\"”] as in iterationk of
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Algorithm 1. Also there ar¢A§€“*)| multiplication nodes for eacbfc““), in order to carry out
the multiplications in iteratio: of Algorithm 1.

To show PPAD-hardness, we observe that an arbitrary grapgéene can be encoded
as an AGG} without loss of compactness (see Section 2.1). Thus thegrobf finding
a Nash equilibrium in a graphical game can be reduced to thielgmn of finding a Nash
equilibrium in an AGGH. Since finding a Nash equilibrium in a graphical game is kntwn
be PPAD-hard, finding a Nash equilibrium in an AGGs PPAD-hardm

For AGG-FNs that satisfy the conditions for Theorem 4.5 orGAENAs that satisfy Theo-
rem 4.6, similar arguments apply, and we can prove PPAD-tetemess for those subclasses of
games if we make the reasonable assumption that the operasad to define the CI function
nodes can be implemented as an arithmetic circuit of polyadength that satisfies the second
condition of Theorem 5.3.

Although any Nash equilibrium is close to arNash equilibrium (in the space of mixed
strategy profiles), a givertNash equilibrium may be arbitrarily far from any Nash emilim
of the game. Etessami and Yannakakis [2007] consideredttintes notion of approximate
Nash equilibrium in the sense of being close to an exact Ngshilerium, and showed that the
problem of finding such a solution given a normal-form ganwisplete for the complexity class
FIXP, which is contained in PSPACE but not known to be in NRe Thieaker” notion of-Nash
equilibrium that we consider here is more amenable to pralatomputation: the corresponding
complexity class PPAD is in NP, implying that checking wresth mixed-strategy profile is an
e-Nash equilibriumis in P (e.g., for AGGs this can be doneightfiorwardly by computing best
responses using the expected utility algorithm).

5.2 Computing a Nash Equilibrium: The Govindan-Wilson Algorithm

Now we move from the theoretical to the practical. The PPAIDdhess result of Corollary 5.4
implies that a polynomial-time algorithm for Nash equiiibn is unlikely to exist, and indeed
known algorithms for identifying sample Nash equilibriasbavorst-case exponential running
times. Nevertheless, we will show that our dynamic programgralgorithm for expected utility
can be used to achieve exponential speedups in such algsrids well as an algorithm for com-
puting a sample correlated equilibrium. Specifically, wevghow to speed up key computations
in the inner loops of these algorithms.

First we consider Govindan and Wilson’s [2003] continuatimethod, a state-of-the-art
method for finding mixed-strategy Nash equilibria in mylkizyer games. This algorithm starts
by perturbing the payoffs to obtain a game with a known eluilim. It then follows a path that
is guaranteed to lead to at least one equilibrium of the walgunperturbed game. To take each
step, we need to compute thayoff Jacobiamunder the current mixed strategy in order to get the
direction of the path; we then take a small step along the gadirepeat.

The payoff Jacobian under a mixed strategg a (>, |4;|) x (>, |A;|) matrix with entries

% = VVa”:z @) (5.1)
= Z u(a;,C(ai, ay,a)) Pr(alo). (5.2)
acA

100pserve that the second condition in Theorem 5.3 impliesttisaexpected utility algorithm must take polynomial
time; however, some polynomial algorithms (e.g., thosertg on division) do not satisfy this condition.
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Here an overbar is shorthand for the subscrigt, i’} wherei # i’ are two players; e.gg =
a_gq+y- The rows of the matrix are indexed banda; while the columns are indexed kyand
a;. Given entryVVj;f;_/(E), we callq; its primary action nodeanda, its secondary action
node '

We note that efficient computation of the payoff Jacobiamigdrtant for more than simply
Govindan and Wilson’s continuation method. For example,itérated polymatrix approxima-
tion (IPA) method [Govindan & Wilson, 2004] has the same catafional problem at its core.
At each step the IPA method constructs a polymatrix gameigheatinearization of the current
game with respect to the mixed strategy profile, the Lemkertém algorithm is used to solve
this game, and the result updates the mixed strategy prafd in the next iteration. Though
theoretically it offers no convergence guarantee, IPA isrofmuch faster than the continuation
method. Also, it can be used to give the continuation methgdiek start. The payoff Jacobian
may also be useful to multiagent reinforcement learningrétigms that perform policy search.

5.2.1 Computing the Payoff Jacobian

Now we consider how the payoff Jacobian may be computed. tieouéb.2) shows that the
VV;';?;V, () element of the Jacobian can be interpreted as the expedigdaftagent: when

she takes actiom;, agent’ takes actiom;/, and all other agents use mixed strategies according to
7. So a straightforward—and quite effective—approach iss® aur expected utility algorithm

to compute each entry of the Jacobian.

However, the Jacobian matrix has certain extra structiaedhows us to achieve further
speedup. For example, observe that some entries of theidacate identical. If two entries
have the same primary action nadgthen they are expected payoffs on the same utility function
u®, and so have the same values if their induced probabilityibigions overC(®) are the same.
We need to consider two cases:

1. The two entries come from the same row of the Jacobian, lsggmp’s actiona,. There
are two sub-cases to consider:

(a) The columns of the two entries belong to the same playeut different actions;
andaj;. If a§.‘”) = a’g.‘“), i.e., a; anda’; both project to the same projected action
in a;’s projected action grapt,thenVV;3, = VvV . This implies that when

. " i
aj,ay ¢ v(a;), VViI, =VV 7.

(b) The columns of the entries correspond to actions of idiffeplayers. We observe
that for allj anda,; such thatr(“i)(ag.““)) =1,VVJ, (@) =V, (0-;). As a special
case, ifAE.“L') = {0}, i.e., ageny does not affect’'s payoff when: playsa;, then for
all aj € A]', VVaZ;]aJ (E) = V;L (O',i).

2. If a; anda; correspond to the same action nad¢but owned by agentsandj respec-
tively), thus sharing the same payoff functiofi, thenVV,J, = VV;, . Furthermore,
if there exista; € A;,a); € A; such that,(®) = a;-(a) (or 8') = 5% for contribution-

. . . . K J
independent AGG-FNs), thewV? | = VV/" .
i@y 7%

11For contribution-independent AGG-FNs, the condition tmeséﬁf;i) = 6((177'), i.e., a; anda’; have the same
projected contribution undet;. !
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A consequence of 1(a) is that any Jacobian of an AGG has atmost, ., (n—1)(v(a;)+
1) distinct entries. For AGGs with bounded in-degree, thi8{s ), | A;|). For each set of iden-
tical entries, we only need to do the expected utility corapiah once. Even when two entries
in the Jacobian are not identical, we can exploit the siritylanf the projected strategy profiles
(and thus the similarity of the induced distributions) begéw entries, reusing intermediate results
when computing the induced distributions of different erstr Since computing the induced prob-
ability distributions is the bottleneck of our expected pfialgorithm, this provides significant
speedup.

First we observe that if we fix the rog, «,;) and the column’s playey; thena is the same for
all secondary actions; € A;. We can compute the probability distributi®®(c,, 1 |a;, 7)),
thenforalla; € A;, we just need to apply the actiaf to get the induced probability distribution
for the entryVV,/, .

Now suppose we fix the roW, a;). For two column playerg andj’, their corresponding
strategy profilesr_(; ;3 ando_y; j, are very similar, in fact they are identical in— 3 of
then — 2 components. For AG@®s, we can exploit this similarity by computing the distrilout
(‘“)), then for each # ¢, we “undo”j’s mixed strategy to get the distribution induced

by o_¢i 53, by treating distribution?r(cn,l|a(_a,j)) ando; as coefficients of polynomials and
computing their quotient using long division. (See Sect0.5 of [Jiang, 2006] for a more

detailed discussion of interpreting distributions ovenfigurations as polynomials.)

Pr(cp-1lo

5.2.2 Finding equilibria of symmetric and k-symmetric games

Nash proved [1951] that all finite symmetric games have at leae symmetric Nash equilibrium.
The Govindan-Wilson algorithm can be adapted to find symimiash equilibria in symmetric
AGG-s. The modified algorithm now operates in the space of synmeneixed strategy pro-
files, and follows a path of symmetric equilibria of pertullsymmetric games to a symmetric
equilibrium of the unperturbed game. The correspondingfialacobian undes, is now a
|A| x |.A| matrix whose entry at row and columm’ is n — 1 multiplied by the expected util-
ity of a player choosing action, when another player is choosing acti@hand the rest of the
players play mixed strategy.. Such an entry can be efficiently computed using the teclesiqu
for symmetric expected utility computation discussed intlea 4.1.4, which are faster than our
expected utility algorithm for general AGGs. Techniquescdssed in the current section can
further be used to speed up the computation of Jacobiang isythmetric case. In particular, it
is straightforward to check that the Jacobian has at fost ,(v(a) + 1) = O(|E|) identical
entries, wherd® is the set of edges of the action graph.

A straightforward corollary of Nash’s [1951] proof is thatyak-symmetric AGG# has at
least onegk-symmetric Nash equilibrium. Relying on similar argumesdsabove, we can adapt
the Govindan-Wilson algorithm to fingd-symmetric equilibria ink-symmetric AGGfs. The
bottleneck is the computation of thesymmetric version of payoff Jacobians, the entries of
which can be shown to be equal to constant multiples of ceetgdected utilities. Such expected
utilities can be efficiently computed using the techniquesubssed in Section 4.1.5.

5.3 Computing a Nash Equilibrium: The Simplicial Subdivision Algorithm

Another algorithm for computing a sample Nash equilibrigsman der Laan, Talman & van der
Heyden'’s [1987] simplicial subdivision algorithm, whicé derived from Scarf’s [1967] algo-
rithm for computing fixed points. At a high level, the algbrit does the following.

1. The space of mixed strategy profiles= [ [, 3; is partitioned into a set of subsimplexes.
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2. We assign labels to vertices of the subsimplexes, in a wely that a “completely labeled”
subsimplex corresponds to an approximate Nash equilibrium

3. The algorithm follows a path of “almost completely lalzlsubsimplexes, and eventually
reaches a “completely labeled” subsimplex.

4. Such an approximate equilibrium can be refined by restattie algorithm near the ap-
proximate equilibrium using a finer grid.

At each step along the path, the algorithm needs to complgésiaf the subsimplex, which
in turn depends on computation of expected utilities und&ethstrategy profiles. By using our
AGG-based Algorithm 2 for computing expected utility, tsiep can be sped up exponentially,
as compared to the normal-form-based implementation.

5.4 Computing a Correlated Equilibrium

Papadimitriou and Roughgarden [2008] proposed a polyretimia algorithm for computing a
sample correlated equilibrium given a game representaiitrpolynomial type and a polynomial-
time subroutine for computing expected utility under mixaichtegy profiles. Recently, Stein
et al. [2010] showed that Papadimitriou and Roughgarden’s dlgorican fail to find an ex-
act correlated equilibrium, and presented a slight modi€ioaof the algorithm that efficiently
computes anr-correlated equilibrium. (Ar-correlated equilibrium is an approximation of the
correlated equilibrium solution concept, whemneasures the extent to which the incentive con-
straints for correlated equilibrium are violated.) Incorgting this fix, we have the following.

Theorem 5.5 ([Papadimitriou & Roughgarden, 2008]) If a game representation has polyno-
mial type, and has a polynomial algorithm for computing etpd utility, then are-correlated
equilibrium can be computed in time polynomialdxg% and the representation size.

The reader might wonder why it is difficult to compute cortethequilibrium—even in ex-
act form—qgiven that there is a well-known linear programgnformulation for computing a
correlated equilibrium. The catch is that this LP has onéatée for each action profile. Thus,
while it amounts to a polynomial-time algorithm for gamegresented in normal form, its size
is exponential in the size of any compact representatiowfach the simple algorithm for com-
puting expected utility given by Equation 4.1 is inadequéteeed, in these cases ewdscrib-
ing a correlated equilibrium using these probabilities of @ciprofiles can require exponential
space. Papadimitriou and Roughgarden’s results are thok deeper than they may first seem.
The algorithm outputs an-correlated equilibrium represented as the mixture of gpahial
number of product distributions over action profiles. Sitieetheorem requires that the game
representation has polynomial type, this polynomial nmetof product distributions can also be
represented polynomially.

The second condition in this theorem involves the companatif expected utility. As a
direct corollary of Theorem 5.5 and our own Theorem 4.1 dlexists a polynomial algorithm
for computing are-correlated equilibrium given an AG@-

Corollary 5.6 Given a game represented as an A@Gn e-correlated equilibrium can be com-
puted in time polynomial itbg % and the size of the AG@-

Similarly, for AGG-FNs and AGG-FNAs for which the expectetility problem can be
solved in polynomial time (see Theorems 4.5 and 4&prrelated equilibria can be computed
in polynomial time.
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6 Experiments

Although our theoretical results show that there are siggmifi benefits to working with AGGs,
they might leave the reader with two worries. First, the ezadight be concerned that while
AGGs offer asymptotic computational benefits, they might I practically useful. Second,
even if convinced about the usefulness of AGGs, the readgiitmiant to know the size of prob-
lems that can be tackled by the computational tools we hawelaleed so far. We address both of
these worries in this section, by reporting on the resulexéénsive computational experiments.
Specifically, we compare the performance of the AGG reptaten and our AGG-based algo-
rithms against normal-form-based solutions using theh(igptimized) GameTracer package
[Blum et al,, 2002]. As benchmarks, we used AGG and normal-form reptasens of instances
of Coffee Shop games, Job Market games, and symmetric A&@ random graphs. We com-
pared the representation sizes of AGG and normal-form septations, and compared their
performance resulting from using these representationsntpute expected utility, to compute
Nash equilibria using the Govindan-Wilson algorithm, amddmpute Nash equilibria using the
simplicial subdivision algorithm. Finally, we show how spleequilibria of these games can be
visualized on action graphs.

6.1 Software Implementation and Experimental Setup

We implemented our algorithms in a freely-available sofeeyaackage, in order to make it easy
for other researchers to use AGGs to model problems of istte@ur software is capable of:

e reading in a description of an AGG;
e computing expected utility and Jacobian given mixed stpapofile;

e computing Nash equilibria by adapting GameTracer’s [Bktral., 2002] implementation
of Govindan and Wilson’s [2003] continuation method; and

e computing Nash equilibria by adapting GAMBIT’s [McKelvey al., 2006] implementa-
tion of the simplicial subdivision algorithm [van der Laanhal.,, 1987].

We extended GAMUT [Nudelmaet al, 2004], a suite of game instance generators, by imple-
menting generators of instances of AGGs including Ice Cr&anmdor games (Example 2.5),
Coffee Shop games (Example 2.7), Job Market games (Exantplarid symmetric AGGs on
arandom action graph with random payoffs. Finally, with DemBargiacchi, we also developed
a graphical user interface for creating and editing AGG3$.ohbur software is freely available
athttp://agg. cs. ubc. ca.

When using Coffee Shop games in our experiments, we setfgsagoidomly in order to test
on a wide set of utility functions. For the visualization afudibria in Section 6.7 we set the
Coffee Shop game utility functions to be

u®(c(a), e(pl), e(pl)) = 20 = [e(@)]* — c(py,) — log(c(pir) + 1),

wherep!, is the function node representing the number of players sihgeadjacent locations
andp!, is the function node representing the number of playerssihgmther locations.
When using Job Market games in our experiments, we set thity éiinctions to be

Rq
(@) + X en(a)—{ay 0-1c()

with R,, setto2,4,6,8,10 andK, settol, 2, 3,4, 5 for the five levels from high school to PhD.

u® () = — K,
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When using Ice Cream Vendor games for the visualization ofliegia in Section 6.7 we set
the utilities so that for a playérchoosing actiory, each vendor choosing a locatioh € v(«)
contributesw yw; utility to ¢. wy is -1 whena' has the same food type asand 0.8 otherwisew,
is 1 whena’ anda correspond to the same location, and 0.6 when they corrdspatifferent
(but neighboring) locations. In other words, there is a tiegaeffect from players choosing
the same food type, and a weaker positive effect from plagieo®sing a different food type.
Furthermore, effects from neighboring locations are wetien effects from the same location.

All our experiments were performed using a computer clusiasisting of 55 machines with
dual Intel Xeon 3.2GHz CPUs, 2MB cache and 2GB RAM, runningeSuinux 10.1.

6.2 Representation Size

First, we compared the representation sizes of AGG-FNs lagid induced normal forms. For
each game instance we counted the number of payoff valuesdkded to be stored.

We first looked ab x 5 block Coffee Shop games, varying the number of players.rEi§u
(left) has a log-scale plot of the number of payoff valuesdolerepresentation versus the number
of players. The normal form representation grew exponkytigth respect to the number of
players, and quickly became impractical. The size of the A§3esentation grew polynomially
with respect to:. As we can see from Figure 9 (right), even for a game instaritte80 players,
the AGG-FN representation stored only about 2 million nurabln contrast, the corresponding
normal form representation would have had to stiogex 10'° numbers.

We then fixed the number of players at 4 and varied the numbecidns; for ease of
comparison we fixed the number of columns at 5 and only chatigedumber of rows. Recall
from Section 2.2.1 that the representation size of CoffepSfames—expressed both as AGGs
and in the normal form—depends only on the number of playeds@mber of actions, but not
on the shape of the region. (Recall that the number of aciofs+ 1, whereB is the total
number of blocks.) Figure 9 (left) shows a log-scale plothef humber of payoff values versus
the number of actions, and Figure 9 (right) gives a plot fst fhe AGG-FN representation. The
size of the AGG representation grew linearly with the nuniferows, whereas the size of the
normal form representation grew like a higher-order poiyired. For a Coffee Shop game with 4
players on a0 x 5 grid, the AGG-FN representation stores only about 8000 rerslwvhereas
the normal form representation would have to stofex 10'* numbers.

We also tested on Job Market games from Example 3.1, which hawactions. We varied
the number of players from 3 to 24. The results are similashasvn in Figure 11 (left). This
is consistent with our theoretical observation that thessiaf normal form representations grow
exponentially inn while the sizes of AGG representations grow polynomially:in

6.3 Expected Utility Computation

We tested the performance of our dynamic programming alyarfor computing expected util-
ities in AGG-FNs against GameTracer’s normal-form-badgdrghm for computing expected
utilities. For each game instance, we generated 1000 rarsfi@tegy profiles with full sup-
port, and measured the CPU (user) time spent compiifjh@y_,,) under these strategy profiles.
Then we divided this measurement by 1000 to obtain the ageC&y) time.

We first looked at Coffee Shop games of different sizes. Walfike size of blocks &t x 5
and varied the number of players. Figure 10 shows plots afehgts. For very small games the
normal-form-based algorithm is faster due to its smalleskieeping overhead; as the number
of players grows larger, our AGG-based algorithm’s runringe grows polynomially, while the
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Figure 9: Representation sizes of coffee shop games. Top beb grid with 3 to 16 players (log
scale). Top right: AGG only; x 5 grid with up to 80 players (log scale). Bottom left: 4-player
r x 5 grid, r varying from 3 to 15 (log scale). Bottom right: AGG only, up&0 rows.

normal-form-based algorithm scales exponentially. Forentban five players, we were not able
to store the normal form representation in memory. Meareybiir AGG-based algorithm scaled
to much larger numbers of players, averaging about a secotwhtpute an expected utility for

an 80-player Coffee Shop game.

Next, we fixed the number of players at 4 and the number of cotuat 5, and varied the
number of rows. Our algorithm’s running time grew roughhyddarly with the number of rows,
while the normal-form-based algorithm grew like a highedter polynomial. This was consistent
with our theoretical observation that our algorithm tak&s:|.A| + n*) time for this class of
games while normal-form-based algorithms takg.A|"~!) time.

We also considered strategy profiles having partial supdhile ensuring that each player’s
support included at least one action, we generated stratedijes with each action included in
the support with probability 0.4. GameTracer took about &d%s full-support running times
to compute expected utilities for the Coffee Shop game mt&ta mentioned above, while our
AGG-based algorithm required about 20% of its full-supponning times.

We also tested on Job Market games, varying the numbersyenslaThe results are shown
in Figure 11 (right). The normal-form-based implementatian out of memory for more than 6
players, while the AGG-based implementation averagedtadbquarter of a second to compute
expected utility in a 24-player game.

6.4 Computing Payoff Jacobians

We ran similar experiments to investigate the computatfqragoff Jacobians. As discussed in
Section 5.2, the entries of a Jacobian can be formulatedmected payoffs, so a Jacobian can
be computed by doing an expected payoff computation for eaith entries. In Section 5.2 we

discussed methods that exploit the structure of the Jagdbiturther speed up the computation.
GameTracer’s normal-form-based implementation alsoagtspthe structure of the Jacobian by
reusing partial results of expected payoff computationdhie/comparing our AGG-based Ja-
cobian algorithm (as described in Section 5.2) to GameTsoaplementation, we observed

results very similar to those for computing expected payaftir implementation scaled polyno-
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with 3 to 16 players. Top right: AGG onl$,x 5 grid with up to 80 players. Bottom left: 4-player
r x 5 grid, r varying from 3 to 15. Bottom right: AGG only, up to 80 rows.
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mially in n» while GameTracer scaled exponentiallyrin We instead focus on the question of
how much speedup the methods in Section 5.2 provided, by @aangpour algorithm in Section
5.2 against the algorithm that computes expected payo$iagour AGG-based algorithm de-
scribed in Section 4) for each of the Jacobian’s entries. &t on Coffee Shop games on a
5 x 5 grid with 3 to 10 players, as well as Coffee Shop games witha§gals, 5 columns and
varying numbers of rows. For each instance of the game weoralydgenerated 100 strategy
profiles with partial support. For each of these game ingsur algorithm as described in Sec-
tion 5.2 was consistently about 50 times faster than comgukpected payoffs for each of the
Jacobian’s entries. This confirms that the methods disduss8ection 5.2 provide significant
speedup for computing payoff Jacobians.

6.5 Finding a Nash Equilibrium using the Govindan-Wilson agorithm

Now we show experimentally that the speedup we achieveddimpeiting Jacobians using the
AGG representation led to a speedup in the Govindan-Wilsgorighm. We compared two

versions of the Govindan-Wilson algorithm: one is the impdatation in GameTracer, where
the Jacobian computation is based on the normal-form reptasion; the other is identical to
the GameTracer implementation, except that the Jacobiart®anputed using our algorithm for
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the AGG representation. Both techniques compute the Jacsleixactly. As a result, given an
initial perturbation to the original game, these two impéatations follow the same path and
return exactly the same Nash equilibrium.

Again, we tested the two algorithms on Coffee Shop gamesrgingsizes: first we fixed the
sizes of blocks at x 4 and varied the number of players; then we fixed the numbeiayEps at 4
and number of columns at 4 and varied the number of rows. Febrgame instance, we randomly
generated 10 initial perturbation vectors, and for eadfalperturbation we ran the two versions
of the Govindan-Wilson algorithm. Although the algorithang(sometimes) find more than one
equilibrium, we stopped both versions of the algorithmraftee equilibrium was found. Since
the running time of the Govindan-Wilson algorithm is vernsiéive to the initial perturbation,
for each game instance the running times with differeniahgierturbations had large variance.
To control for this, for each initial perturbation we lookattheratio of running times between
the normal-form implementation and the AGG implementafian, a ratio greater than 1 means
the AGG implementation ran more quickly than the normal famplementation). We present
the results in Figure 12 (left). We see that as the size of &émeas grew (either in the number
of players or in the number of actions), the speedup of the AGdementation over that of the
normal-form implementation increased. The normal-formlementation ran out of memory for
game instances with more than 5 players, preventing us feporting ratios above = 5. Thus,
we ran the AGG-based implementation alone on game instavitetarger numbers of players,
giving the algorithm a one-day cutoff time. As shown by thg-&zale boxplot of CPU times in
Figure 12 (top right), for game instances with up to 12 play#re algorithm terminated within
one day for most initial perturbations. A normal form regmasition of such a game would have
needed to store.0 x 10*® numbers. Figure 12 (bottom right) shows a boxplot of the CiRlg$
for the AGG-based implementation, varying the number obastwhile fixing the number of
players at 4. For game instances with up to 49 actions %al2 grid plus one action for not
entering the market), the algorithm terminated within aarho

We also tested on Job Market games with varying numbers gémaThe results are shown
in Figure 13. For the game instance with 6 players, the AG&#amplementation was about
100 times faster than the normal-form-based implememtaii¢hile the normal-form-based im-
plementation ran out of memory for Job Market games with ntiwaa 6 players, the AGG-based
implementation was able to solve games with 16 players irvarege of 24 minutes.

6.6 Finding a Nash Equilibrium using Simplicial Subdivision

As discussed in Section 5.3, we can speed up the normalti@sad simplicial subdivision al-
gorithm by replacing the subroutine that computes expadiéty by our AGG-based algorithm.
We have done so to GAMBIT’s implementation of simplicial disision. As with the Govindan-
Wilson algorithm, from a given starting point both the onigi version of simplicial subdivision
and our AGG version follow a deterministic path to determ@xactly the same equilibrium.
Thus, all performance differences are due to the choice pesentation. We compared the
performance of AGG-based simplicial subdivision agaimstmal-form-based simplicial subdi-
vision on instances of Coffee Shop games as well as instaficasdomly-generated symmetric
AGG-{s on small world graphs. We always started from the mixedesgyeprofile in which each
player gives equal probability to each of her actions.

We first considered instances of Coffee Shop games with 4,réveslumns and varying
numbers of players. For each game size we generated 10destatith random payoffs. Figure
14 (left) gives a boxplot of the ratio of running times betweke two implementations. The
AGG-based implementation was about 3 times faster for tpéager instances and about 30
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of players. Bottom row: 4-playerx 4 grid, » varying from 3 to 12. For each row, the left figure
shows ratio of running times; the right figure shows logsgade of CPU times for the AGG-
based implementation. The dashed horizontal line indsdie one day cutoff time.

times faster for the 4-player instances. We also tested die€8hop games with 3 players, 3
columns and numbers of rows varying from 4 to 7, again gemgrdi0 instances with random
payoffs at each size. Figure 14 (right) gives a boxplot ofrftie of running times. As expected,
the AGG-based implementation was faster and the gap inpeaitce widened as games grew.

We then investigated symmetric AG(-on randomly generated small world graphs with
random payoffs. The small world graphs were generated WA UT’s implementation with
parameterds = 1 andp = 0.5. For each game size we generated 10 instances. We first fixed
the number of action nodes at 5 and varied the number of [gayResults are shown in Fig-
ure 15 (top row). While there was large variance in the alisalunning times across different
instances, the ratios of running times between normal-foased and AGG-based implementa-
tions showed a clear increasing trend as the number of gayenreased. The normal-form-based
implementation ran out of memory for instances with morenthlayers. Meanwhile, we ran
the AGG-based implementation on larger instances with adayecutoff time. As shown by the
boxplot, the AGG-based implementation solved most ingandth up to 8 players within 24
hours. We then fixed the number of players at 4 and varied thebeu of action nodes from
4 to 16. Results are shown in Figure 15 (bottom row). Againilevne actual running times
on different instances varied substantially, the ratiosiofhing times showed a clear increasing
trend as the number of actions increased. The AGG-basedingpitation was able to solve a 16-
action instance in an average of about 3 minutes, while thealform-based implementation
averaged about 2 hours.

40



[N
S
o

ratio of NF and AGG times

PP
[SERN
S o

A O ©
o O O

n
(=]

10000

1000

100

10

CPU time in seconds
=

0.1

—_—

(=]

3

4 5 6
number of players

T
]

5

LIk 4

@Hgﬁéw

]
]
1

3456

7 8 910111213141516
number of players

Figure 13: Govindan-Wilson algorithm; Job Market gamesywey numbers of players. Left:
ratios of running times. Right: logscale plot of CPU timestfte AGG-based implementation.

ratio of NF and AGG times
= = N N w
(=] Ul (=) Ul (=)

1

E=

number of players

ratio of NF and AGG times

(4]

B
o

i

w
3]

w

N
]

N

]

3 2

[
o —
B
-,
13 16 19 22

number of actions

Figure 14: Ratios of running times of simplicial subdivisialgorithms on Coffee Shop games.
Left: 4 x 4 grid with 3 to 4 players. Right: 3-playerx 3 grid, r varying from 4 to 7.

6.7 Visualizing Equilibria on the Action Graph

Besides facilitating representation and computationatiion graph can also be used to visualize
strategy profiles in a natural way. A strategy profilée.g., a Nash equilibrium) can be visualized
on the action graph by displaying the expected numbers gépdahat choose each of the actions.
We call such a tuple thexpected configurationndero. This can be easily computed given
for each action node, we sum the probabilities of playing i.e. E[c(a)] = ;. v 0i(a) where
o;(a) isOwhena ¢ A;. When the strategy profile consists of pure strategies gdtris simply
the corresponding configuration.

The expected configuration often has natural interpratatid-or example in Coffee Shop
games and other scenarios where actions correspond t@lochibices, an expected configu-
ration can be seen as a density map describing expected pdaptions. We illustrate using
a 16-player Coffee Shop game ontax 4 grid. We ran the (AGG-based) Govindan-Wilson
algorithm, finding a Nash equilibrium in 77 seconds. The et configuration of this (pure
strategy) equilibrium is visualized in Figure 16.

We also examined a Job Market game with 20 players. A normai fepresentation of
this game would have needed to storé x 10'3* numbers. We ran the AGG-based Govindan-
Wilson algorithm, finding a Nash equilibrium in 860 secontise expected configuration of this
equilibrium is visualized in Figure 17 (left). Note that tequilibrium expected configuration on
some of the nodes are non-integer values, as a result of reir@gies by some of the players.
We also visualize two players’ mixed equilibrium strategie Figure 17 (right).
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Finally, we examined an Ice Cream Vendor game (Example dtB)ynocations, 6 ice cream
vendors, 6 strawberry vendors, and 4 west-side vendorsGbladan-Wilson algorithm found
an equilibrium in 9 seconds. The expected configuration isf (ihure strategy) equilibrium is
visualized in Figure 18. Observe that the west side is kadbtidenser due to the west-side
vendors. The locations at the east and west ends were chels¢imaly more often than the
middle locations, because the ends have fewer neighborthaa@xperience less competition.

7 Conclusions

We proposed action-graph games (AGGSs), a fully expressivgegrepresentation that can com-
pactly express utility functions with structure such astegtispecificindependence and anonymity.
We also extended the basic AGG representation by introduitinction nodes and additive
utility functions, allowing us to compactly represent a midange of structured utility func-
tions. We showed that AGGs can efficiently represent ganoes fnany previously studied com-
pact classes including graphical games, symmetric gamesyyanous games, and congestion
games. We presented a polynomial-time algorithm for compguexpected utilities in AGGls
and contribution-independent AGG-FNs. For symmetric &msymmetric AGG#s, we gave
more efficient, specialized algorithms for computing expéaitilities under symmetric and
symmetric strategy profiles respectively. We also showedtbaise these algorithms to achieve
exponential speedups of existing methods for computingrgpkaNash equilibrium and a sam-
ple correlated equilibrium. We showed experimentally theihg AGGs allows us to model and
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Figure 16: Visualization of a Nash equilibrium of a 16-playoffee Shop game on4éx 4
grid. The function nodes and the edges of the action grapharghown. The action node at the
bottom corresponds to not entering the market.

analyze dramatically larger games than can be addresseth&inormal-form representation.

We briefly mention a few of our current and future researchalions. We are currently ex-
ploring applications of AGGs for modeling and analyzingyareal-world systems, and have pre-
liminary results for network routing problems [Thompsaral, 2007] and complete-information
advertising auction problems [Thompson & Leyton-BrownQ2D Another interesting prob-
lem is the computation of pure-strategy Nash equilibria G@\)s. While the problem is NP-
complete in general (Conitzer, personal communicatiodeendently proved by Daskalakis
et al. [2009]), in Jiang and Leyton-Brown [2007] we presented a/poinial time algorithm
for the class of symmetric AG@s whose action graphs have bounded in-degree and bounded
tree-width. We are currently extending this algorithm tassles of asymmetric AG@s and
AGG-FNs. Another line of research is to extend our AGG frammivibbeyond complete-information
simultaneous-move games. In Jiang and Leyton-Brown [2@0&0proposed Bayesian action-
graph games (BAGGs) for representing Bayesian games, ahdriget al. [2009] we proposed
temporal action-graph games (TAGGS) for representing ifepeinformation dynamic games.
In both cases, we showed that our representations can ctlyngresent games with anonymity
or context-specificindependencies; we also provided efft@lgorithms for computing expected
utility, which lead to speedups in the computation of Baiash equilibria and behavior-strategy
Nash equilibria, respectively.
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